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ivity of FDG-PET, MR morphometry, and diffusion tensor imaging (DTI) derived
fractional anisotropy (FA) measures to diagnosis and memory function in mild cognitive impairment (MCI).
Patients (n=44) and normal controls (NC, n=22) underwent FDG-PET and MRI scanning yielding measures of
metabolism, morphometry and FA in nine temporal and parietal areas affected by Alzheimer's disease and
involved in the episodic memory network. Patients also underwent memory testing (RAVLT). Logistic
regression analysis yielded 100% diagnostic accuracy when all methods and ROIs were combined, but none of
the variables then served as unique predictors. Within separate ROIs, diagnostic accuracy for the methods
combined ranged from 65.6% (parahippocampal gyrus) to 73.4 (inferior parietal cortex). Morphometry
predicted diagnostic group for most ROIs. PET and FA did not uniquely predict group, but a trend was seen for
the precuneus metabolism. For the MCI group, stepwise regression analyses predicting memory scores were
performed with the same methods and ROIs. Hippocampal volume and FA of the retrosplenial WM predicted
learning, and hippocampal metabolism and parahippocampal cortical thickness predicted 5 minute recall. No
variable predicted 30 minute recall independently of learning. In conclusion, higher diagnostic accuracy was
achieved when multiple methods and ROIs were combined, but morphometry showed superior diagnostic
sensitivity. Metabolism, morphometry and FA all uniquely explained memory performance, making a multi-
modal approach superior. Memory variation in MCI is likely related to conversion risk, and the results
indicate potential for improved predictive power by the use of multimodal imaging.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Mild cognitive impairment (MCI) is often considered a preclinical
stage of Alzheimer's disease (AD), with an annual conversion rate to
AD of 6–25% (Petersen et al., 2001). AD is characterized by a specific
pattern of cerebral atrophy and hypometabolism (Mosconi et al.,
2007). The alterations in MCI are especially targeted at temporal and
parietal areas comprising the hippocampus, entorhinal, parahippo-
campal, retrosplenial, posterior cingulate, precuneus, supramarginal,
inferior parietal and middle temporal cortex (Barnes et al., 2007;
Baron et al., 2001; Chetelat et al., 2003; De Santi et al., 2001; Du et al.,
2007; Fischl et al., 2002; Fjell et al., 2008; Frisoni et al., 2002; Herholz
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et al., 2002; Ishii et al., 2005; Karas et al., 2008). Several of these areas
are integral parts of the episodic memory network, as shown by
imaging and patient studies (Buckner, 2004; Scoville and Milner,
1957). The temporal lobe has rich projections to parietal regions,
important for the representation of information being retrieved
(Wagner et al., 2005). Hence, temporal and parietal brain changes
are presumed to underlie much of the prominent and progressive
memory loss detectable even in early stages of AD.

Changes in these brain areas in MCI can be captured by different
methods, including structural MRI, yielding morphometric informa-
tion (Mosconi et al., 2007), measurement of water diffusion by Diffu-
sion Tensor Imaging— DTI (Chua et al., 2008), and metabolic positron
emission tomography — PET with 2[18F]fluoro-2-deoxy-D-glucose
(FDG) as the tracer (Mosconi et al., 2007). Different brain characte-
ristics relevant for understanding memory and memory problems in
MCI and ADmay be captured by the different methods (Chetelat et al.,

mailto:k.b.walhovd@psykologi.uio.no
http://dx.doi.org/10.1016/j.neuroimage.2008.10.053
http://www.sciencedirect.com/science/journal/10538119


216 K.B. Walhovd et al. / NeuroImage 45 (2009) 215–223
2003; De Santi et al., 2001; Ishii et al., 2005; Muller et al., 2005). It has
been assumed that FDG-PET may detect early neocortical dysfunction
before atrophy appears (De Santi et al., 2001), and diffusion imaging-
derived parameters have been reported to have as good as or greater
diagnostic utility than volumemeasures in MCI (Fellgiebel et al., 2006,
2005; Kantarci et al., 2005; Muller et al., 2007; Zhang et al., 2007).
However, FDG-PET, MR morphometry and DTI have all proven to
differentiate between NC, MCI, and AD (Mosconi et al., 2007). The goal
of the present study is to determine to what extent the methods
overlap or explain unique variance in comparison of MCI and normal
controls, and in predicting memory function in MCI.

Three hypotheses were made: H1) PET, MRI morphometry and DTI
aremoderately intercorrelated, and contribute to explain unique variance
in diagnostic group and memory function. This is based on previous
literature reporting metabolic, morphometric and fractional aniso-
tropy (FA; DTI) reductions to varying degrees in MCI (Ishii et al., 2005;
Mosconi et al., 2007; Muller et al., 2007). H2) PET and DTI have
somewhat superior sensitivity compared to morphometry. This has been
indicated by a few recent studies (De Santi et al., 2001; Fellgiebel et al.,
2006, 2005; Muller et al., 2007; Zhang et al., 2007). H3) The strongest
imaging–memory relationships are found for medial temporal lobe (MTL)
areas, and relationships of intermediate strength are found for lateral
temporal and parietal areas. This is based on the crucial role of MTL in
memory and atrophic changes in MCI and AD starting in MTL areas,
then spreading to parietal areas (Edison et al., 2007; Karas et al., 2008;
Mosconi et al., 2007; Petersen et al., 2000; Rossi et al., 2007; Walhovd
et al., 2004).

Materials and methods

Sample

Patients aged 40–79 with MCI (Gauthier et al., 2006) established
for at least 6 months attending a university-based clinic between
September 2005 and December 2007 were assessed for inclusion,
and all included gave informed consent. Patients with no or very mild
ADL problems, symptoms lasting ≥6 months, Global Deterioration
Scale score — GDS (Auer and Reisberg, 1997; Reisberg et al., 1988)
from 2 to 3 as determined from a clinical interview and screening
tests (Mini Mental Status Examination — MMSE (Folstein et al., 1975),
STEP parameters 13–20 and fluency, interference, numeral–letter
items from the I-flex (Royall et al., 1992; Wallin et al., 1996) and
Cognistat (Kiernan et al., 1987)) were included. All patients had
CDR=0.5, 8 patients had GDS=2 and the remaining GDS=3. One
patient with GDS=3 had MMS=23, but had normal employment and
was self-sufficient. Criteria for exclusion were established psychiatric
disorder, cancer, drug abuse, solvent exposure or anoxic brain
damage. The patients were scanned on either of two different mag-
netic resonance (MRI) scanner sites, with two different 1.5 T magnets
(see MRI scanning and analyses). Healthy volunteers without deficits
related to memory, emotionality and tempo, primarily spouses of
participating patients, were included in the study as controls. Poten-
tial controls were interviewed by a clinician, and only controls with a
GDS score of 1 were included. Data from a subsample, on thickness
across the cortical mantle, hippocampal volume and memory in
relation to CSF biomarkers have been reported elsewhere (Fjell et al.,
2008). All participants, patients and controls, had FDG-PET scans
from the same site (see FDG-PET scanning and analyses). All scans
were manually inspected for accuracy of segmentations and coregis-
trations. Based on this inspection, one patient was excluded due to
major stroke, and one was excluded based on suspected normal
pressure hydrocephalus with enlarged ventricles. After application of
these criteria, the n was 44 MCI patients (23 males/21 females, mean
age 61.5 yrs, SD 8.1, range 43–77, MMSE (Folstein et al., 1975)=27.8,
SD=1.7, range=23–30) and 22 controls (11 males/11 females, mean
age 62.2 yrs, SD 8.0, range 46–75). For analyses involving temporal
DTI, one patient was excluded due to missing temporal DTI data, and
one was excluded from analyses involving entorhinal FA due to a lack
of voxels left for analyses after ROI erosion (see below). Hence, for
ROI by ROI group comparisons by logistic regressions and T-tests,
n=44, for all methods and areas except temporal FA, while for
logistic regression analysis involving all ROIs simultaneously, n=42.
Memory data was also missing for one additional patient, so for the
memory analysis (involving all ROIs), n=41. All values were stan-
dardized to the total sample of patients w/o missing values for the
variable in question, i.e. no missing replacement was made. The
slightly variable patient sample size (n=41–44) in analyses is regret-
table, but unfortunately hard to avoid in a study involving this many
measures. n or degrees of freedom are explicitly stated for each
analysis to avoid misunderstandings regarding number of partici-
pants included. The project was approved by a committee for medical
research ethics.

MRI scanning and analyses

MRscanswere from two sites (site 1: 11 controls,17 patients; site 2:
11 controls, 25 patients). Site 1: Siemens Symphony 1.5 T with a con-
ventional quadrature head coil. Two 3D magnetization prepared gra-
dient echo (MP-RAGE), T1-weighted sequences in succession (TR/TE/
TI/FA=2730 ms/3.19 ms/1100 ms/15°, matrix=256×192), 128 sagittal
slices, thickness=1.33 mm, in-plane resolution of 1.0 mm×1.33 mm.
Site 2: Siemens Espree 1.5 T. One 3D MP-RAGE, T1-weighted sequence
(TR/TE/TI/FA=2400/3.65/1000/8°, matrix=240×192), 160 sagittal
slices, thickness=1.2 mm, in-plane resolution of 1 mm×1.2 mm. As
described in another publication on a subsample from this study (Fjell
et al., 2008), volumes of hippocampus, cortex, and the lateral ventricles
were estimated for the 6 healthy controls who were scanned on both
scanners and correlated across scanners. The Pearson coefficientswere
of 0.99, 0.90, and 0.999 (all pb .05), respectively. Also, a newly
developed atlas normalization procedure was used, which has been
shown to increase the robustness and accuracy of the segmentations
across different scanners (Han and Fischl, 2007). Mean differences in
cortical thickness were generally within±0.1 mm across the brain
surface. This indicates that change of scanner did not introduce much
bias in the data. The pulse sequences for DTI were: site 1: b=700; 12
directions repeated twice; 1 bo-value per slice, TR=4300 ms,
TE=131 ms, number of axial slices: 19, slice thickness=5 mm (gap
1.5 mm), in-plane resolution: 1.8×1.8 mm2, bandwidth: 955 Hz/pixel.
Site 2: b=750; 12 directions repeated 5 times; 5 bo-values per slice,
TR=6100 ms, TE=117 ms, number of slices: 30, slice thickness: 3 mm
(gap 1.9 mm), in-plane resolution: 1.2×1.2 mm2, bandwidth: 840 Hz/
pixel.

MR segmentations were performed using FreeSurfer 4.0.1 (http://
surfer.nmr.mgh.harvard.edu/). For hippocampal volume calculations,
an automated, fully 3D whole-brain segmentation procedure was
used (Fischl et al., 2002, 2004), where a probabilistic atlas is used
and a Bayesian classification rule is applied to assign a neuroana-
tomical label to each voxel. The atlas consists of a manually-derived
training set created by the Center for Morphometric Analysis (http://
www.cma.mgh.harvard.edu/) from 40 other subjects across the age
range, including individuals with AD. The segmentation uses three
pieces of information to disambiguate labels: 1) the prior probability
of a given tissue class occurring at a specific atlas location, 2) the
likelihood of the image given that tissue class, and 3) the probability
of the local spatial configuration of labels given the tissue class. This
latter term represents a large number of constraints on the space of
allowable segmentations, and prohibits label configurations that
never occur in the training set (e.g. hippocampus is never anterior to
amygdala). A newly developed atlas normalization procedure was
used, which has been shown to increase the robustness and accuracy
of the segmentations across scanner platforms (Han and Fischl,
2007). The present segmentation of the hippocampal formation
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includes dentate gyrus, cornu ammonis (CA) fields, subiculum/
parasubiculum and the fimbria (Makris et al., 1999).

The cortical surface was reconstructed to measure thickness at
each surface location, or vertex, using a semi-automated approach
described elsewhere (Dale et al., 1999; Dale and Sereno, 1993; Fischl
and Dale, 2000; Fischl et al., 1999a,b; Salat et al., 2004). Thickness
measurements were obtained by reconstructing representations of
the gray/white matter boundary and the pial surface (Dale et al., 1999;
Dale and Sereno, 1993) and then calculating the distance between
those surfaces at each point across the cortical mantle. This method
uses both intensity and continuity information from the entire three
dimensional MR volume in segmentation and deformation procedures
to produce representations of cortical thickness. The surface is created
using spatial intensity gradients across tissue classes and is therefore
not simply reliant on absolute signal intensity. The surface produced is
not restricted to the voxel resolution of the original data and thus are
capable of detecting submillimeter differences between groups (Fischl
and Dale, 2000). The technique has been validated via histological
(Rosas et al., 2002) as well as manual measurements (Kuperberg et al.,
2003). The cortical surface then is parcellated according to procedures
described by Fischl et al. (Fischl et al., 2004), including the presently
selected ROIs. Each surface location, or vertex, is assigned a neuroana-
tomical label based on 1) the probability of each label at each location
in a surface-based atlas space, based on a manually parcellated
training set; 2) local curvature information; and 3) contextual infor-
mation, encoding spatial neighborhood relationships between labels
(conditional probability distributions derived from the manual
training set). The parcellation scheme (Desikan et al., 2006) labels
cortical sulci and gyri, and thickness values are calculated in the ROIs.
The ROIs used here were extracted as described by Desikan et al.
(2006). They defined 34 ROIs manually in each hemisphere in 40
scans. This information was then encoded in the form of an atlas that
was used to automatically label ROIs. The automatically and the
manually defined ROIs had an average intraclass correlation coeffi-
cient of 0.84, and a mean distance error of less than 1 mm. The same
algorithm was used to define the ROIs in the present paper.

Based on the cortical parcellation, a newly developed algorithm
was used to calculateWM labels in the gyrus underneath each cortical
label. EachWMvoxel within a gyruswas labeled according to the label
of the nearest cortical voxel. DeepWMwas not assigned to a particular
cortical area, with a 5 mm distance limit. This yielded one WM area
corresponding to each cortical area. The volume of each region was
obtained by counting the number of 1 mm3 voxels included (all scans
were re-sampled to 1 mm isotropic voxels during the first FreeSurfer
processing step), and these labels were used for calculation of WM FA.
A three dimensional illustration of the segmentation of the ROIs used
in the present article is shown in Fig. 1.
Fig. 1. 3D renderings of the hippocampus, cortical and white matter parcellations in an av
parcellations are shown in the lateral and medial view, with white matter parcellations dra
The preprocessing of the diffusion data involved motion and eddy-
current correction. Each DW image was registered to the T2-weighted
low-b (b=0) image (i.e. the image with no diffusion encoding). This
registration is a 12 parameter affine one, and accounts for bothmotion
between scans, and for residual eddy-current distortions present in
the diffusion weighted images. Note that for the balanced echo
sequences the eddy current distortions are small, and in our expe-
rience the 12 parameter transforms are sufficient to remove the
remaining warping. A rigid transform was computed that maximizes
the mutual information between the T1-weighted anatomical and the
T2-weighted low-b image. General linear modeling was used to fit the
tensors to the data and create the FA and tensor maps, in addition to
three eigenvector and eigenvalue maps. The low-b volume was
registered to each subject's anatomical volume, and the FA, eigen-
vector, and eigenvalue maps were analyzed in register with the low-b.
Mean FA were calculated in each of the WM ROIx in each hemisphere
(see Figs. 1 and 2). To avoid the problem of partial volume effects near
the GM/WM border, each label was eroded by one voxel. Only FA
values within the remaining WM area were used in the analyses. The
probability of gray matter voxels being included was assumed to be
extremely low. Since each participant's FA volumewas only registered
to the same participant's anatomical volume, the problem of spurious
differences in FA due to imperfect inter-participant registration and
gross anatomical differences was greatly reduced. This method has
been validated by comparison with atlas based tractography, yielding
almost identical FA values (Fjell et al., in press). One patient was
excluded from analyses involving temporal FA, due to failure to
localize DTI images correctly to selected temporal lobe ROIs (WM
underlying entorhinal, parahippocampal, and middle temporal cor-
tex). One patient was excluded from analyses involving entorhinal FA
due to missing WM in the entorhinal cortex WM label in both
hemispheres after erosion. For 3 patients and 1 control, entorhinal
WM was left in only one hemisphere after erosion prior to extracting
FA values. These subjects were not excluded from analyses, since
average FA was used and since there was available WM after erosion
for both hemispheres for all other ROIs.

FDG-PET scanning and analyses

18F-FDG PET/CT imaging was performed with a Biograph 16
PET/CT scanner (Siemens). Subjects fasted for at least 4 h prior to
imaging (one patient had insulin-dependent diabetes and was
allowed to have a light meal 2 h prior to scan). All patients and
controls had FDG-PET scans, but a routine of measuring blood glucose
on arrival was introduced after the study started, and therefore this
was done for a subsample comprising 30 patients and 12 controls only.
For these subjects, blood glucose was in the range 4.3–6.8 mmol/L,
erage brain made from the subjects scanned at site II. Both cortical and white matter
wn in lighter colour nuances.



Fig. 2. The figure illustrates the main steps in the multi-modal image analysis. (A and B) The brain surface is parcellated into 34 different regions in each hemisphere (B), and a newly
developed algorithm assigns a label to each underlyingWM voxel (A). (C) Five cortical ROI's and hippocampus, of much importance in the episodic memory network, were chosen for
analyses in the present paper. EC — entorhinal cortex; PH — parahippocampal cortex; RC — retrosplenial cortex; PC — posterior cingulate; Pre — precuneus. (D) Every voxel in each
brain volume is assigned a label based on the cortical parcellations (A), theWMparcellations (B), and thewhole-brain segmentation. The distance between the red and the yellow line
is the cerebral cortex. (E) The FA volume is registered to the anatomical volume, and mean FA is calculated from the voxels included in each WM ROI (A). (F) FDG-PET data are also
registered to the anatomical volume, and the metabolism is divided by the metabolism in the brainstem. Mean metabolism in each cortical ROI and hippocampus is calculated. (G)
Thewhole-brain segmentation yields hippocampal volume (hippocampus is marked in yellow, indicated by the red arrows). A three-dimensional rendering of hippocampus is shown
to illustrate the result of the segmentation.
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except for the patient with insulin-dependent diabetes (11.0 mmol/L)
and one control subject with diabetes type II (11.7 mmol/L). The
images of these two subjects, as well as those of the subjects for whom
blood glucose level at arrival was not registered, were deemed to be of
satisfactory quality and hence, all were included in the analysis.
Subjects had an intravenous bolus of 200 MBq 18F-FDG injected and
rested for 45 min before scanning. A low-dose non-diagnostic CT scan
was performed followed by a PET scan. The PET acquisition was
performed in 3Dmodewith one single axial position, duration 15min.
Attenuation and scatter corrections were performed. The images were
reconstructed by an iterative technique (5 iterations, 8 subsets), using
a Gaussian smoothing filter with full width at half maximum (FWHM)
of 3.5 mm. The image format was 256×256. For each subject, FDG-PET
frames were registered to the corresponding intensity-normalized
MRI volume. PET activity was averaged within each ROI defined on the
MRI and normalized to activity within the brainstem. In order to
correct for partial volume effects coupled with atrophy, volume (for
the hippocampus) and cortical thickness (for the cortical ROIs) were
regressed out of all PET variables, and the standardized residuals were
used in most analyses (see below).

Regions of interest

ROIs were restricted to the hippocampus, entorhinal, parahippo-
campal, retrosplenial, posterior cingulate, precuneus, inferior parietal,
supramarginal and middle temporal cortices, and the underlying WM
(see Fig. 1), averaged across hemispheres. These ROIs were used to
extract ROI PET and FA values (see Fig. 2). Intracranial volume (ICV)
was calculated (Buckner et al., 2004) to control for differences in head
size for hippocampal volumetric analyses.

Memory testing

RAVLT (Schmidt, 1996) was used to measure episodic memory in
the patients. A list of 15 words is read aloud, and the patient
subsequently recalls as many as possible. This is repeated five times
with the same list of words, and the sum of words recalled across 5
trials yields a total learning score. Next, an interference list is read
aloud and free recall is requested, before the patient is requested to
recall the first list again without this being repeated (5 minute recall).
After 30 min, the patient is asked to recall the first list of words with
no re-reading (30 minute recall). The number of intrusions, i.e. falsely
recalled items, was subtracted for the 5th learning trial, total
learning, 5 minute and 30 minute recall scores (5th learning trial:
M=9.1, SD=3.3, range=2–15; total learning: M=35.4, SD=12.1,
range=11–66; 5 minute recall: M=6.3, SD=4.1, range=−2–15;
30 minute recall: M=6.1, SD=4.2, range=−1–14). These scores were
standardized to the sample and used in the statistical analysis.

Statistical analyses

First, the different methods were correlated for each ROI, with age,
gender and MR site controlled for. In this analysis, the PET variables
were used without volume/thickness regressed out, since that would



Table 1
Intercorrelations of the three methods for eight ROIs

PET-GM thickness PET-FA GM thickness-FA

Entorhinal .42 (n=66) .20 (n=64) − .09 (n=64)
Parahippocampal .27 (n=66) .14 (n=65) − .18 (n=65)
Retrosplenial .26 (n=66) − .02 (n=66) − .06 (n=66)
Posterior cingulate .05 (n=66) .31 (n=66) − .12 (n=66)
Precuneus .15 (n=66) .07 (n=66) − .02 (n=66)
Supramarginal .23 (n=66) .05 (n=66) − .07 (n=66)
Inferior parietal .35 (n=66) .22 (n=66) − .02 (n=66)
Middle temporal .35 (n=66) .20 (n=65) − .00 (n=65)

Significant correlations (pb .05) corrected for 3 comparisons, are printed in bold. GM
thickness=cortical thickness, FA=fractional anisotropy of the gyral white matter
underlying the cortical area. For hippocampus, only PET and volume data were
available, r= .31 (n=66), p= .012.
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per se make PET and MR uncorrelated, and the relationship between
the two may be interesting from a clinical point of view. Next, the
standardized residuals with effects of MR site (for morphometry/DTI),
volume/thickness (for PET), age, and gender regressed out, were used
in the group analyses. Logistic regression analysis was performedwith
3methods (metabolism, cortical thickness and FA ofWM) for each of 8
ROIs (entorhinal, parahippocampal, retrosplenial, posterior cingulate,
precuneus, supramarginal, inferior parietal and middle temporal
cortices) with diagnostic group (MCI, NC) as the dependent variable.
Then, to investigate the demographic and ROI variables' sensitivity to
variance in memory function within the MCI group, stepwise
regression analyses were performed with the following dependent
variables in turn: 1) total learning, 2) 5minute recall, and 3) 30minute
recall with the score on the last learning trial also entered among the
predictors. Correlation analyses were also performed with the
memory and ROI variables.

Results

Group comparisons and interrelations among methods

Group values for the different ROIs, standardized to sample w/
effects of age, gender, MR site (MR/DTI), and volume (PET) regressed
out, are shown in Fig. 3. Intercorrelations of the different methods
are shown in Table 1. The measures generally did not correlate
strongly within ROIs. The logistic regression analyses with all 26
variables (9 MR+9 PET+8 FA) yielded a classification accuracy of
100%. No single variable then explained unique variance. The results
of logistic regression analyses for each ROI separately with data from
the different methods entered as predictor variables, are shown in
Table 2. Diagnostic accuracy ranged from baseline probability (65.6%,
due to unequal percentages of NC and MCI) for parahippocampal
cortex to 73.6% for the inferior parietal cortex. For the parahippo-
campal ROI, no method was a significant predictor of diagnostic
group, and for the posterior cingulate, GM thickness was marginally
significant (p=.055). For all other ROIs, MR volumetry measures
uniquely predicted diagnostic group. Metabolism was a marginally
Fig. 3. Group values for the different ROIs, standardized to the total sample. The effects o
regressed out, and the standardized residuals are depicted.
significant (p= .079) predictor besides GM thickness (p= .024) of the
precuneus.

Theoretically, even if not being a unique predictor, FA could still
single-handedly predict diagnostic group, to the extent that the
variance explained by FA could be overlapping with that of MR
morphometry and PET. However, independent samples T-tests
showed no significant (pb .05) or trends towards (pb .10) group
differences in FA for any of the ROIs. To ensure that different scanners
did not mask a possible FA group effect, T-tests were also done for the
FA values for sites 1 and 2 separately. There were still no near-
significant group differences (all pN .20). For the other methods,
group differences or trends were found, showing lower metabolism,
thinner cortex, and/or smaller neuroanatomical volumes in patients
relative to controls. For metabolic measures, Levene's test showed
significant differences in equality of variances across groups for some
of the ROIs. This should be noted as a possible limitation when
interpreting the data, but corrected values were then used when
reporting df, t and p. A significant difference was found for precuneus
metabolism (t [1, 63.829]=2.137, p= .036), with a trend for posterior
cingulate metabolism (t [1,62.883]=1.904, p=.061). For PET variables
not corrected for atrophy, significant differences were found for
f age, gender, MR site for morphometry and DTI, and volume/thickness for PET, were



Fig. 4. Scatterplots depicting the relationship among a) total learning score and b)
5 minute recall and the ROI measures shown in stepwise regression analysis to explain
unique variance in these memory measures. All plots show memory scores on the
Y-axis, and values are standardized.

Table 2
Results from logistic regression analyses separately for each ROI

Method B p Odds
ratio

% Correct
classification

Nagelkerke
R square

Hippocampus PET − .430 .160 .651 NC: 45.5
n=66 MR volume −1.168 .002 .311 MCI: 86.4

DA: 72.7 .261
Entorhinal cortex PET − .103 .761 .902 NC: 40.9
n=64 GM thickness −2.018 .001 .133 MCI: 81.0

FA − .105 .747 .900 DA: 67.2 .363
Parahippocampal
cortex

PET − .362 .229 .693 NC: 18.2

n=65 GM thickness − .539 .076 .621 MCI: 93.0
FA .050 .865 1.075 DA: 67.7 .101

Retrosplenial
cortex

PET − .303 .368 .738 NC: 36.4

n=66 GM thickness −1.058 .003 .347 MCI: 86.4
FA − .264 .412 .768 DA: 69.7 .231

Posterior
cingulate cortex

PET − .396 .223 .673 NC: 36.4

n=66 GM thickness − .667 .043 .513 MCI: 90.9
FA − .380 .235 .684 DA: 72.7 .159

Precuneus cortex PET − .615 .069 .540 NC: 31.8
n=66 GM thickness − .734 .027 .480 MCI: 90.9

FA .010 .972 .990 DA: 71.2 .133
Supramarginal
cortex

PET − .241 .447 .786 NC: 27.3

n=66 GM thickness − .730 .022 .482 MCI: 90.9
FA .054 .848 1.056 DA: 70.3 .117

Inferior parietal
cortex

PET − .291 .403 .748 NC: 40.09

n=66
GM thickness −1.077 .005 .341 MCI: 93.2 .209

Middle temporal
cortex

PET − .076 .821 .927 NC: 36.4

n=66 GM thickness −1.102 .007 .332 MCI: 90.7
FA .110 .716 1.116 DA: 72.3 .195

Table 3
Stepwise regression analyses (n=41) with a) total learning score (standardized
aggregate of hits minus intrusions for 5 learning trials) and b) 5 minute recall
(standardized hits minus intrusion score) as the dependent variables

Total learning β p R2 F Model p

Model 1
Hippocampal volume .46 .003 .21 10.338 .003

Model II
Hippocampal volume .58 .000
Retrosplenial FA .42 .004 .37 11.142 .000

5 minute recall
Model I
Hippocampal metabolism .42 .007 .18 8.268 .007

Model II
Hippocampal metabolism .36 .013
Parahippocampal thickness .33 .021 .28 7.515 .002

220 K.B. Walhovd et al. / NeuroImage 45 (2009) 215–223
hippocampal (t [1,63.167]=2.457, p= .017) and precuneus (t[1,63.999]=
2.473, p= .016) metabolism, with trends for entorhinal (t[1,64]=1.910,
p= .061), parahippocampal (t[1,64]=1.684, p= .097), retrosplenial
(t[1,63.779]=1.841, p=.070), posterior cingulate (t [1,62.829]=1.928,
p= .058), and inferior parietal (t [1,63.871]=1.993, p= .051) metabo-
lism. For gray matter morphometry, significant group differences
were found for hippocampal volume (t [1,64]=3.518, p= .001), and
thickness of the entorhinal (t [1,64]=4.107, p= .000), retrosplenial (t
[1,64]=3.316, p= .002), precuneus (t [1,64]=2.230, p= .029), supra-
marginal (t [1,64]=2.461, p= .017), inferior parietal (t [1,64]=3.234,
p= .002), and middle temporal (t [1,64]=2.909, p=.005) cortices,
with trends towards differences in thickness of the parahippocampal
(t [1,64]=1.918, p=.060) and posterior cingulate (t [1,64]=1.890,
p= .063) cortices.

Relationships of ROI imaging measures with neuropsychological memory
function in MCI

Results of the stepwise regression analyses with total learning and
5 minute recall scores respectively, and the FDG-PET, DTI and MR
volumetry variables, are shown in Table 3. Hippocampal volume and
retrosplenial FA served as unique predictors of total learning, and
together, these variables explained 37% of the variance in learning.
Hippocampal metabolism and parahippocampal thickness served as
unique predictors of 5 minute recall, and together, these variables
explained 28% of the variance. The analysis with 30 minute recall as
the dependent variable and the ROI variables, along with recall score
at the 5th learning trial showed that only recall score at the 5th
learning trial was then a unique predictor (F[1,39]=71.863, p= .000),
explaining 37% of the variance. The regression plots for each of the ROI
measures uniquely predicting a) total learning, and b) 5 minute recall,
are shown in Fig. 4. Correlations for each ROI variable and these
measures are shown in Fig. 5. In general, the highest memory-mor-
phometry correlations were found in the medial temporal ROIs. PET
also showed temporal correlations, but tended to show stronger
parietal learning correlations than morphometry. A dissociation
between metabolism and morphometry was especially seen in the
posterior cingulate, where thickness did not correlate, or correlated
weakly and negatively with memory performance, while metabolism
was significantly positively correlatedwith both learning and 5minute



Fig. 5. Correlations between the different methodological measures from the 9
temporal and parietal ROIs and learning (upper panel) and 5 minute recall (lower
panel). ROI measures were controlled for age and sex, as well as MR site for
morphometry and DTI, and volume/thickness for PET. The dashed reference lines
indicate p= .05.
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recall. FA correlated only in the precuneus, where a significant positive
relationship was seen for learning, and a trend towards the same for
5 minute recall.

Discussion

Incipient Alzheimer's disease may affect patients decades before
the development of dementia, but diagnostic criteria and relevant
biomarkers have not been established for this stage of the disease.
Using multi-modal imaging, we aimed to determine which functional
and structural parameters best identify patients versus controls at this
stage, and explain the loss of memory in these patients. Three
hypotheses were made based on earlier imaging findings and
knowledge of the episodic memory network: 1) PET, MRI morpho-
metry and DTI are moderately intercorrelated, and contribute to
explain unique variance in diagnostic group and memory function. 2)
PET and DTI have somewhat superior sensitivity compared to
morphometry. 3) The strongest imaging–memory relationships are
found for medial temporal lobe (MTL) areas, and relationships of
intermediate strength are found for lateral temporal and parietal
areas. Using logistic regression analyses, we found that 100%
diagnostic accuracy could be achieved by entering imaging data
obtained from nine temporal and parietal ROIs by three imaging
modalities; PET, structural MRI, and DTI. Further analyses showed that
morphometry best distinguished the diagnostic groups, but all
imaging modalities explained unique variance in memory function.
Hippocampal volume and retrosplenial FA explained learning, where-
as hippocampal metabolism and thickness of the parahippocampal
cortices best explained 5 minute recall. The data are further discussed
in relation to the hypotheses below.
H1. PET, MRI morphometry and DTI are moderately intercorrelated,
and contribute to explain unique variance in diagnostic group and
memory function.

The correlations among methods within ROIs were surprisingly
low. Correlations were found for PET and MR measures in the
hippocampus and entorhinal, middle temporal and inferior parietal
ROIs. However, FAwas not related toMRmorphometry in any ROI, and
related to metabolism in the posterior cingulate only. Since both
metabolic, morphometric and FA reductions have been reported in
MCI (Ishii et al., 2005; Mosconi et al., 2007; Muller et al., 2007), one
might expect some interrelations among the measures. A Pearson
correlation of − .47 between hippocampal volume and apparent
diffusion coefficient (ADC) in MCI has previously been reported in a
diffusion weighted imaging (DWI) study (Kantarci et al., 2005). Still,
the present findings for FA and MR are in line with another recent
report, where normalized hippocampal volume and FA were not
significantly related in MCI (Muller et al., 2007). However, both these
studies employed diffusion measures (FA, mean diffusivity (MD) and
ADC) taken within the hippocampus, a predominantly gray matter
structure. These DTI measures are likely to reflect something different
than FA within white matter ROIs such as used here, e.g. microscopic
gray matter atrophy versus e.g. demyelination and axonal damage.

When entering all morphometry, metabolism and FA variables for
all nine ROIs simultaneously, 100% diagnostic accuracy was achieved,
which gives hope that multimodal imaging can indeed be clinically
useful. However, only MR morhometry uniquely predicted diagnostic
group when PET, MR morphometry and FA were entered simulta-
neously in logistic regression per ROI. Theoretically, even if not being
unique predictors, metabolism and FA could still single-handedly
predict diagnostic group, to the extent that the variance explained by
these methods were overlapping with that of the others. This was in
part the case for metabolism, for which a significant group difference
was found in the precuneus, and a trend towards difference was seen
in posterior cingulate metabolism. The present metabolism measures
entered in group analyses were corrected for atrophy by removing, for
each ROI, all variance associated with volume or thickness. This was
done because tracer concentration measurement in small structures,
e.g. cortical ROIs, can be confounded by limited spatial resolution
(Samuraki et al., 2007), especially in atrophic brains, as might be the
case in MCI patients. Signal changes due to atrophy is reflected both in
the volumetric and original metabolic images, and potentially
contribute to the sensitivity and predictive power of the methods.
Partialing out variance from PET measures associated with atrophy
may be seen as a strict, but probably correct approach, since non-
existent tissue does not use metabolites and the volumetric images
clearly most accurately reflect brain atrophy.

Brain atrophy may interact with metabolism in complex ways. It
has been assumed that FDG-PET may detect early neocortical
dysfunction before atrophy appears, and in one study, metabolism
reductions were found to exceed volume losses in MCI (De Santi et al.,
2001). However, in another study of cognitively impaired but not
demented elderly, both cingulate hypometabolism and hippocampal
atrophy were significant risk factors, but the latter was statistically
more robust (Jagust et al., 2002;Wu et al., 2002). Ishii et al. (2005) also
reported complementary diagnostic sensitivity of PET and MR in mild
AD, with volumetric reductions in the MTL and metabolic reductions
in the PC and parietal areas. It has been suggested that a metabolic/
structural discrepancy in MTL could be a plastic response in mild AD,
where early regional synaptic malfunction in affected areas cannot be
detected due to compensatory activity in unaffected neurons (Geddes
et al., 1985; Ishii et al., 2005, 1998; Matsuda et al., 2002). Another
recent study with many of the same methods and ROIs as the present,
also found morphometric variables to be at least as predictive of
memory in MCI and AD as metabolic variables (Walhovd et al., in
press), but unique variance was explained by each method. In the
present study, when variance associated with volume/thickness was
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not removed from the PET variables, additional group differences and
trend towards such did indeed emerge. I.e. these PET results were
clinically sensitive in and of themselves. However, this explained
variance was not unique to PET, with the possible exception of
precuneus metabolism, which showed a trend besides precuneus
cortical thickness. Further, metabolism did explain unique variance in
recall. Hence, based on the present data, MR morphometry was
superior in predicting diagnostic group, and PET and MR morpho-
metry both explained unique variance in memory.

FAwas not a predictor of diagnostic group in the present study, and
this did not appear due to variance overlapping with and explained by
the other methods. However, group differences between MCI patients
and controls in WM FA have previously been found (Fellgiebel et al.,
2005; Zhang et al., 2007). Other differences may thus be influential.
The present MCI group appears heterogeneous with respect to the
wide rangeof RAVLTmemory scores, but has on average relativelygood
memory scores. Their average MMSE score is higher than that of the
MCI groups studied byMuller et al. (2007), and Fellgiebel et al. (2005),
but comparable to that of theMCI group studied by Zhang et al. (2007).

The relatively weak inter-correlations among methods suggest
that they may each explain unique variance. This was confirmed with
regard to memory function. Hippocampal volume was the strongest
unique ROI predictor in learning, explaining 21% of the variance.
Adding retrosplenial FA yielded an increase in explained variance to
37%. Hippocampal metabolism explained 18% of the variance in
5 minute recall, and adding parahippocampal thickness increased the
amount of explained variance to 28%. Brain variables did not add to the
amount of explained variance in 30 minute recall when the last
learning trial score was accounted for, and this may not be surprising
given the relatively high amount of variance (37%) explained by the
last learning trial score.

H2. PET and DTI have somewhat superior sensitivity compared to
morphometry.

This was not supported for sensitivity to diagnostic classification.
MR morphometry variables were the only unique predictors of
diagnostic group when entered together with corresponding PET
and DTI variables. For morphometry, group differences were found for
seven of nine ROIs, with trends for the remaining two. For PET, a group
difference was observed only for the precuneus, with a trend for the
posterior cingulate cortices. When effects of volume or thickness were
not removed from the PET variables, somewhat stronger results were
observed, but still weaker than for GM morphometry: group
differences were then observed for two of nine ROIs, and trends for
five. The least predictive measure was FA, for which no group
difference or trend towards such was observed in any ROI. This is in
contrast to the recent studies by Muller et al. (2007) where superior
diagnostic utility was found for hippocampal FA relative to hippo-
campal volume, and Zhang et al. (2007), where adding cingulum DTI
to hippocampal volume improved diagnostic classification. Hippo-
campal diffusion measures have previously also been found to predict
conversion from MCI to AD as well as or better than hippocampal
volume (Fellgiebel et al., 2006; Kantarci et al., 2005). However, three of
these studies (Fellgiebel et al., 2006; Kantarci et al., 2005; Muller et al.,
2007) reported diffusion measures within hippocampal gray matter,
rather than white matter structures within the MTL. All classes of
measures demonstrated sensitivity to, and explained unique variance
in memory performance. However, from the correlations depicted in
Fig. 5, it is evident that PET and MR morphometry in general showed
stronger memory relationships than FA measures.

H3. The strongest imaging–memory relationships are found for MTL
areas, and relationships of intermediate strength are found for parietal
areas.

This hypothesis was partly confirmed: the strongest memory
relationships were found for the hippocampus for morphometry in
learning and recall, and for PET in 5 minute recall. However, there was
clearly also some dissociation across methods with regard to ROI
sensitivity. For metabolism, memory relationships of comparable or
higher strength than those found for MTL structures were found in
parietal ROIs. This was especially true for the posterior cingulate,
which showed significant positive metabolism correlations with
learning and recall, whereas there was no (or even a slightly negative)
relationship between memory performance and cortical thickness in
this area. The predictive power of DTI in memory was greatest for the
medial parietal structures, and there were no relationships or trends
towards such between temporal FA and memory. Muller et al. (2005)
have previously reported a positive relationship between hippocam-
pal GM FA and verbal memory across MCI patients and controls. It is
possible that the atrophic changes starting in MTL areas in MCI
(Edison et al., 2007; Mosconi et al., 2007; Petersen et al., 2000; Rossi
et al., 2007) have an effect on connected parietal white matter before
graymatter change spreading tomedial parietal areas can be detected.
However, such effects were not visible in group comparisons. Rather,
FA of the medial parietal areas may be especially important because of
the rich interconnections of these structures with numerous other
brain areas also playing part in memory (Buckner, 2004).

Conclusions and limitations

In conclusion: PET, MRI morphometry, and DTI were mostly
weakly intercorrelated. Only morphometry explained unique variance
in diagnostic group, but all methods explained unique variance in
memory function. The present data did not support superior
sensitivity of PET and DTI compared to morphometry, but did support
superior sensitivity of a multi-modal approach to diagnosis and
memory function. The strongest morphometry–memory relationships
were found for medial temporal lobe (MTL) areas, while metabolism
of the medial parietal areas were a least as much related tomemory as
metabolism of the medial temporal areas. This was especially true for
learning. For DTI, only medial parietal memory relationships or trend
towards such were seen. The present study has several limitations.
The MCI group studied was included on the basis of clinical and
functional criteria, but has a relatively broad range of memory scores,
and may be heterogeneous also with respect to pathology. It remains
to be seen what proportion will convert to AD, and to what extent the
present neuroimaging findings can be related to differential pathology
within the group. Neuropsychological data on controls should pre-
ferably be included in further studies, both to validate their memory
function and to compare the memory–neuroimaging relationships
identified in MCI-patients to such relationships in healthy persons. A
further limitation is that MR scans from two sites were included.
However, precautions were taken to ensure that this may not have
influenced the results much. Individual differences in memory in MCI
are likely related to conversion risk, and the results indicate potential
for improved predictive power by use of multimodal imaging. The
patients will be followed up to determine if and how multimodal
imaging predicts cognitive decline and conversion to AD, and the
sequence of changes in the different structures involved. It may be
that the sensitivity of methods and their interrelations change as
additional degenerative changes develop, and further studies are
needed to clarify this.
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