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        Abstract - In Ear, Nose and Throat (ENT) surgery, the 
operating volume is very limited. This is especially true in sinus 
surgery, when the instrument passes through the nasal and sinus 
cavity to reach the pathological area. The nasal and sinus bones 
impose geometric constraints on the work volume. During the 
surgery, the surgeon needs to control the motion of the 
instrument tip to accomplish some delicate procedure; 
meanwhile he/she needs to avoid hitting anatomic constraints. In 
this paper, we present a method to assist the path following task 
in a constrained area. The system reads the user’s force input 
and combines it with the planned tip-trajectory to create the tip 
motion constraints; meanwhile it generates the tool-shaft 
boundary constraints based on a 3-D geometric model. We map 
instrument tip motion and boundary information to joint 
displacements via robot kinematics, and then use a constrained 
quadratic optimization algorithm to compute the optimal set of 
corresponding joint displacements. In the preliminary study, we 
show that robot guidance using cooperative control and virtual 
fixtures derived from complex geometry can assist users in 
skilled manipulation tasks, while maintaining desirable 
properties such as collision avoidance and safety. 
 
        Index Terms - collaborative manipulation; virtual fixture; 
optimization robot control; geometry constraint. 
 

I.  INTRODUCTION 

        In sinus surgery, medical instruments or an endoscope 
camera are inserted through the nose into a sinus cavity.  The 
surgeon must precisely manipulate these instruments based on 
visual feedback from the endoscope and on information from 
preoperative 3D images such as CT. Although surgical 
navigation systems can track instruments relative to 
preoperative data [1], the difficulty of precise surgical 
manipulation with endoscopic instruments makes endoscopic 
sinus surgery a natural candidate application domain for 
cooperatively controlled surgical robots.    
        The goal of human-machine collaborative systems 
(HMCS) research is to create mechanisms that selectively 
provide cooperative assistance to a human user (for us, a 
surgeon), while allowing the user to retain ultimate control of 
the procedure. Taylor et al. [2] developed an augmentation 
system for fine manipulation, and Kumar et al. [3] applied it 
to microsurgical tasks such as inserting a needle into a 100 
micron retinal vessel. Virtual fixtures in a collaborative 
system provide cooperative control of the manipulator by 
“stiffening” a hand-held guidance mechanism against certain 
directions of motion or forbidden regions of the workspace. 

Recent research on motion constraints using Kumar’s system 
[4, 5] has focused on simple techniques for “guidance virtual 
fixtures”. This prior work focused on 2D geometric guidance 
motion of the tool tip or camera and assumed that the tool or 
camera itself did not have any other environmental 
constraints.  
        The focus of this paper is automatic generation of spatial 
motion constraints associated with complex 3D anatomy, 
based on preoperative medical images.  In endoscopic sinus 
surgery, the endoscope and other instruments have some 
degree of translational and rotational freedom but their motion 
is constrained by anatomic structures. During surgery, the 
instruments or the camera should avoid collisions or excessive 
force on delicate anatomy while still moving in the desired 
manner to accomplish the intended task.  Constrained robot 
control has been discussed previously in both tele-
manipulation and cooperative manipulation contexts. Funda, 
Taylor, et al. [6] formulated desired motions as sets of task 
goals in any number of coordinate frames relevant to the task, 
optionally subject to additional linear constraints in each of 
the task frames for redundant and deficient robots. The 
geometric complexity of medical workspace constraints in 
ENT makes this approach attractive for our current research.  
In preliminary work [7] we applied the method of [6] to 
surgical environments in which motion constraints on a simple 
path-following task are automatically derived from registered 
pre-operative models created from 3D images.  In this paper, 
we generalize these techniques to more general cooperative 
control cases in which virtual fixtures are automatically 
generated from registered preoperative medical images.  First, 
we describe the system and algorithm for generating spatial 
motion constraints derived from geometry. We then describe 
implementation and experiments.  
        Fig. 1 conceptually illustrates the relationship between 
the instrument, 3D path and approach aperture to the 
workspace cavity in our experiments. The surgical instrument 
is a sharp-tipped pointer held either by a robot or freehand.  In 
other cases it might be a surgical endoscope or a grasping 
instrument.  We use the term “tip frame” to refer to a 
coordinate system whose origin is at the tip of the pointer and 
whose orientation is parallel to the tool holder of the robot.  
The “tool boundary frame” is a coordinate system whose 
origin corresponds to the point on the tool that is closest to the 
surrounding anatomy and whose orientation is again parallel 
to the tool holder.  
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Fig. 2 Virtual fixture generation system 
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Fig. 1 Relationship between the tool, cavity,  

approach aperture, and 3D path in our sample task 

II.  VIRTUAL FIXTURE GENERATION SYSTEM 

        Fig. 2 shows the system of virtual fixture generation for 
our task. In the pre-operative stage, from medical images (e.g., 
CT image, MRI), the surgeon defines the tool-tip path by 
selecting positions in the image slice. 3D geometry model also 
is created from the pre-operative images. After the robot is 
calibrated and registered, the planned tool-tip path and 3D 
model are transformed into the robot coordinate system. This 
paper focuses on a method to generate virtual fixtures derived 
from complicated geometry, which is the shadow part of Fig. 
2. 
        In our collaborative system, the surgeon is in the control 
loop; s/he is able to control the progress of the tool along the 
constrained path. The system reads the surgeon’s input and 
combines it with the planned tool-tip trajectory and the current 
tool-tip position to create the spatial motion for the tool-tip.  
Meanwhile, tool-shaft boundary motion constraints are 
generated from the registered 3D geometry model and the 
current tool position. With some other constraints, such as 
joint limitations of the robot, all these constraints are fed into 
the constrained optimization control algorithm to obtain the 
robot joint velocities  

III.  CONSTRAINED CONTROL ALGORITHM OVERVIEW 

        It is important to be able to place absolute bounds on the 
motion of the instrument in the constrained working 
environment. Within these bounds, the controller should try to 
place the instrument tip as close to the desired position as 
possible.  The basic control loop may be summarized as 
follows: 
        Step 0: We assume that the robot is holding the surgical 
instrument, and that a model of the patient’s anatomy has been 
obtained and registered to the coordinate system of the robot. 
        Step 1: Describe a desired incremental motion of the 
surgical instrument, based upon (a) surgeon inputs, such as 
may be obtained from a joystick or hands-on cooperative force 
control; (b) an a priori surgical task description; (c) real time 
sensor feedback, such as might be obtained from a vision 
sensor.  This description may include both an objective 
function describing desired outcomes (e.g., move as close as 
possible to a target) and motion constraints (e.g., avoid 
collisions, do not exceed robot joint limits, do not permit 
position errors to exceed specified limits, restrict tip motion to 
remain within a desired envelope, etc.).  The desired    

incremental motion is described as the solution to a 
constrained optimization problem.                               
        Step 2: Use the robot and task kinematic equations to 
produce a new linearized optimization problem, in which 
instrument motion variables and other task variables have 
been projected onto incremental joint variables.  This problem 
has the general form:    
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where q∆  is the desired incremental motion of the joint 
variables and x∆ is an arbitrary vector of task variables.  
Different components of the optimization function may be 
assigned different relative weights, so that the errors of critical 
motion elements are close to zero, while errors in other non-
critical motions simply stay as low as possible within 
tolerances allowed by the constraint set. 
        Step 3: Use known numerical methods [8] to compute 
incremental joint motions q∆ , and use these results to move 
the robot.  
        Step 4: Go back to Step 1. 

IV.  SYSTEM IMPLEMENTATION 

A. Tip Spatial Motion Constraint Generation 
        Our method   for implementing guidance virtual fixtures 
for tool-tip spatial motion is described in an earlier paper by 
Marayong, Li, et al. [5].  For completeness, we will 
summarize key details here.  We will model the tool tip as a 
Cartesian “robot” whose position  ( ) ( )3SEtx ∈  and velocity 
( ) 3Rtv ∈  are related to the robot’s joint positions ( )tq  and the 
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        The tip’s motion is to be controlled by applying forces 
and torques on the handle of the instrument, transformed to 
produce forces  resolved into the coordinate system of 
the tool tip. We define a reference direction of motion 

,  and span and kernel projection operators 
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        We then define a function  computing a signed 
distance from the tool tip to the task motion target (e.g., an 
anatomical feature or desired tool path). The new preferred 
direction is then defined as 

( Sxuu ,= )

 

              ( ) ( )[ ] uDfkfDkxD ddc +−= 1                   (4) 
 

where  is a blending coefficient with dk 10 ≤≤ dk , which 
governs how quickly the tool is moved toward the reference 
direction. We then define an admittance control law  
 

[ ]( )ccdesiredtip DkDkv τ+=−                       (5) 

where  is the desired tip velocity, k  is the admittance 
gain and  ( 0 ) is an admittance ratio that attenuates 
the non-preferred component of the force input.  

desiredtipv −

τk 1kτ≤ ≤

        Our desired 3D Curve  is generated by B-spline 
interpolation. As mentioned, the tool-tip trajectory is planned 
by picking positions on the pre-operative medical image 
slices. After registration, all these points are transformed into 
the robot coordinate system. We then interpolate a B-spline 
curve to fit these sample points. At each control loop, the 
robot encoders read out the current tool-tip position. We 
search the closest point on the B-spline to the current tool-tip 
position and compute the tangent direction of the B-spline at 
that point. If ,  and t  are the components of the tangent 
to the curve, and ,  and n  are the components of the 
vector from current position to the closest point on the curve, 
then we have  and . 
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B. Boundary Constraint Generation 
        We use 3D triangulated surface models of anatomy to 
develop real-time constraints on tool motion.  Production of 
such anatomic models from 3D medical images and 
registration of the models to robotic workspaces are well-
established techniques [9]. 
        However, the models are geometrically complex; 
generating constraints in real time can be a challenge.  In the 
current work, we model the surgical tool as one or more “fat” 
line segments representing the tip and tool shaft.  Boundary 
constraints are generated from closest-point pairs  and  
on the geometry boundary and the tool respectively. 

bP kP

        In our work, we use a covariance tree data structure [10] 
to search for the closest point on the surface to the tool. A 
covariance tree is a variant of a k-dimensional binary tree (k-D 
tree). The traditional k-D tree structure partitions space 
recursively along principal coordinate axes. In our covariance 

tree, each sub-space is defined in the orthogonal coordinate 
system of the eigenvectors centered at the center of mass of 
the point set, and is recursively partitioned along this local 
coordinate frame. We rotate each local reference frame so that 
the x-axis is parallel to the eigenvector with the largest 
eigenvalue and the z-axis is parallel to the eigenvector with the 
smallest eigenvalue.  An important advantage of covariance 
trees is that the bounding boxes tend to be much tighter than 
those found in conventional k-D trees and tend to align with 
surfaces, thus producing a more efficient search. 
        The tree is built recursively as follows. Given a set of 
points { }is  sampled from the surface, we find the centroid 
and moments 
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        We then compute the eigenvalue decomposition of M  
and determine a rotation  with columns R xR  and zR  
corresponding to the largest and smallest eigenvalues, as 
discussed above.  We then rotate the is%  to compute i is R s= ⋅(

% .  
Finally, we compute the bounding box of the is(  and partition 
the is(  about the cutting plane .  Each of these sets is 
thus recursively subdivided until only a small number of 
points remain in each box. 

0x =

        In our case, we must modify this procedure because our 
surface model is composed of small triangles, not sample 
points.  To do this, we fit a circumsphere about each triangle.  
We then construct a covariance tree of the centers of each 
circumsphere.  At each node (i.e. for each bounding box) of 
the tree, we note the maximum radius  of all 
circumspheres associated with that node.  We compute the 
corners of an expanded bounding box 

maxr
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where the  &  operations are performed element-
wise. 

min max

        Tree searching proceeds as follows.  Given a line 
segment  between two points  and b , we wish to find 
all possible surface patches that may be closer than some 
threshold distance  to the line segment.  At each level of 
the tree, we first transform the line segment to the local 
coordinates
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with 
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 on the line segment.  If the distance 

node
(

node threshc d e− <
(

threshe

, we recursively search the left and right 

sub-trees for points of close approach to .  When the 
search is complete, we transform all point pairs back into the 
world coordinate system.  If there are no point pairs closer 
than , we generate no boundary constraints for the 
current time step of the control. 
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        One difficulty with this approach is that it tends to 
produce many point pairs from the same patch of anatomy that 
are almost equivalent, thus producing an excessive number of 
motion control constraints.  Therefore, in practice we modify 
our search as follows:  For any non-terminal node with 

 that is very flat (i.e., with max minz z−( (  

smaller than a specified value) and for which the line segment 
does not penetrate the bounding box, we simply return the 
point pair ( ,

(
 without further recursion. )

)

C. Control Algorithm Implementation 
        We have experimented with both velocity and 
incremental step position control.  In the discussion below, we 
will use the latter.  Thus, at each time step, the goal is to 
compute incremental joint motions , which then are fed to 
low-level position servos. 

q∆

        We compute desired tool tip velocity using the 
admittance law described above, and convert this to an 
incremental 6-DOF tool motion 

, where  is the sample 
interval.  We identify 3 classes of requirements: in the tip 
frame, tool boundary frame, and in joint space.  For each, we 
define an objective function 

( ) T0,0,0|| ∆

ζ  to be minimized and a set of 
linearized constraints. 
        Tool tip motion: We require that an incremental tool tip 
motion be as close as possible to some desired value. We 
express this as: 
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where   is a small positive number (0.01 in our 
experiments).  We relate tool frame motion to joint motion via 
the Jacobean relationship ∆ .  We rewrite (8) as ( ) qqJP tiptip ∆=

 ( )
( ) tiptipdestip

tiptiptiptip

hqqJH

PqqJW
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−ζ                    (9) 

 

where  ,T
destipdes P −∆= ε−= 1tiph  and { }tipwdiag=  

denotes a diagonal matrix of weighting factors specifying the 
relative importance of each component of .  Since we 
want to track the path tightly, we set  to a fairly high value 
(1 in the current experiments). 

tipw

        Boundary constraints: Since the instrument is inserted 
into a cavity, we want to ensure that the instrument itself will 

not collide with the cavity boundary as a result of the motion.  
For each potential contact point pair we get a constraint of the 
general form 
 

  ( ) ε≥−∆ bkb PPP +⋅ k
Tn                         (10) 

 

where  is the position of the potential collision point on the 
tool and  is the position of the potential contact point on the 
surface.  and  are the closest point pair we generated by 
the method described in last section.  is the normal of the 
contact point on the surface, and 

kP
P
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b
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ε  is a small positive number 

(0.01 in our experiments).  Constraint (10) indicates that the 
angle between ( )bk PPkP −∆+  and  is less than . We can 
also define an objective function 

T
bn o90

kk P∆k W=ζ  expressing the 
desirability of minimizing extraneous motion of the tool near 
the boundary, and can again rewrite these formulae in terms of 

q∆ : 
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        Currently, we use very low values (0.001) for and rely 
mainly on the inequality constraints.  An alternative would 
have been to leave the 

kw

kζ  term out of the optimization 
altogether. The number of boundary constraints is dynamically 
changed because it depends on how many closest-point pairs 
we generate based on the relative position of the tool and the 
geometry constraint. 
        Joint limits: Finally, we want to ensure that none of the 
joint limits are exceeded as a result of the motion. This 
requirement can be stated as, qqqqq −≤∆≤− maxmin , where  
is the vector of the current values of the joint variables, and 

 and  denote the vectors of lower and upper bounds 
on the joint variables respectively. We also want to minimize 
the total motion of the joints.  This can be rewritten in the 
form  
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Again, we set  to 0.001 and simply enforce the 
inequality constraints.   

sjow int

        Putting it together: We combine all the task constraints 
and objective functions, and then obtain the overall 
optimization problem, which is: 
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Fig. 3 Experimental apparatus showing the JHU Steady-hand robot and 
skull phantom (left) and close-up of pointer tool (right) 
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which can be solved numerically using the method of Lawson 
and Hanson [8] for the set of joint displacements q∆ , 
satisfying the constraint (15) and minimizing the error norm of 
(14).  

V.  EXPERIMENT AND RESULTS 

        We have evaluated our approach using the experimental 
setup shown in Fig. 3. A thin wire attached inside the nasal 
cavity of a plastic skull served as the target path, and the 
benchmark task was to trace this path with the tip of a bent 
pointer without colliding with the walls of the cavity. Five 
small radioopaque fiducials were implanted in the skull, which 
was then CT-scanned.  The positions of the fiducials in the CT 
image were determined by standard image processing 
methods.  We used a Northern Digital Optotrak® 3D tracking 
system to perform registration of CT coordinates to robot 
coordinates and (coincidently) to the Optotrak coordinates by 
standard methods.  Essentially, an Optotrak probe was used to 
locate each fiducial while observing additional Optotrak 
markers on the robot and then the appropriate transformations 
were computed using the method of [12]. 

 
Fig. 4 3D-SLICER [11] surface models of test phantom.  (left) whole skull 
surface model and,  (right) the model of nasal cavity portion used to 
generate constraints 

        We used 3D-SLICER [11] for anatomy modeling and 
interactive display.  3D-SLICER’s built-in segmentation 
functionality was used to threshold, segment and render the 
skull CT dataset to create a triangulated model of the skull 
surface. For the current experiment, we only used the nose and 
sinus portion of the resulting skull model. The 3D-SLICER 
skull surface model and the model of the sinus portion are 
shown in Fig. 4.  There are about 99,000 vertices and 182,000 
triangles in this surface model, all of which were transformed 
to robot coordinates after registration. 
        Our current implementation uses the JHU Steady-hand 
robot [2]. Steady-hand robotic mechanisms are coupled with 
computation to enhance human capabilities at highly skilled, 
interactive tasks. It is a 7 DOF remote-center-of-motion 
(RCM) manipulator with high position resolution.  A force 
sensor is integrated at the end-effector and the operator holds a 
surgical pointer mounted to the force sensor.  
        In our path following experiment, we defined the target 
path with respect to CT space by tracing the wire with the tip 
of an Optotrak pointer.  We gathered multiple sample points 
along the path and then interpolated a 5-th degree B-spline 
curve to fit these sample points. 
        The current tool-tip position with respect to the robot can 
be determined from the robot joint encoders and the forward 
kinematics of the Steady-hand robot. First, we manually 
choose a point on the curve close to the current tip position 
and guide the tool tip to the curve. Then the system reads the 
user’s force input and guides the user to follow the B-spline 
curve. The sampling frequency of position and force data used 
in our algorithm is 30Hz, although a PID controller for 

servoing the robot position runs on a dedicated motion 
control-board at a much higher rate. The tool-tip position is 
computed from the robot encoders and transformed back to 
CT space. As a comparison, we also gathered freehand data. A 
user held the tool with an Optotrak rigid body affixed, and 
moved the tool through the sinus cavity to follow the wire as 
close as possible. The tip position was also transformed into 
CT space. In both cases, the position of the tool is displayed 
on the 3D-SLICER interface. This provides the user with 
visual feedback of the task. 
        We choose the admittance ratio  as 0 to enforce the 
tool-tip motion only along the preferred direction; control gain 

 as 0.2. Our experimental results (TABLE I) show that an 
experienced user can perform the guidance task with twice 
accuracy and in 65% the time with robot assistance compared 
to freehand execution. The average error of 5 trials by robot 
guidance is 0.76mm and the average time is 17.24s; the 
average error for freehand is 1.82mm while the average time 
is 26.61s. During the path following task, the tool itself did not 
hit the bone. The robot calibration and system registration 
errors are the two main sources of tip motion error. In our 
experiment, the residual registration error measured across the 
5 fiducials is 0.425mm. Although it is small, the backlash of 
the robot also contributes to the robot guidance tip motion 
error. Fig. 5 shows tool trajectories and the relative position of 
the tool with the nasal cavity model. Fig. 6 shows the 
complete error of the system. In our task, the size of 

τk

dk

q∆  in (1) 
is 17× . JH ⋅  varies from  to , 720× 739× JW ⋅  varies from 

713×  to 37 7×  according to the number of boundary 

  



 

  

tip point path bent tip portion

tool shaft portion
Fig. 5  Trajectories of the tool during the path following procedure. (left) 
the swept volume of the tool path, (right) the relative position between the 
tool and the nasal cavity. 
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Fig. 6 Magnitude of position error using Robot guidance (solid line) and 
freehand (dashed line). x-axis(mm): the parameter in B-spline parameter 
domain, y-axis(mm): the magnitude of the position error 

constraints. With our 2GHz Pentium IV PC, the average time 
in each control interval for the boundary search and 
optimization problem solution was 5.54ms. 
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VI.  CONCLUSION 

        ENT surgery presents a constrained working environment 
for both the surgeon and the mechanical devices designed to 
assist them. The control for the medical design of the devices 
must reflect these constraints. In this paper we outlined and 
implemented a guidance virtual fixture generated by complex 
3D anatomy.  
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