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Abstract

A new neuroanatomic approach to evaluate the fiber orientation in gross histological sections of the human brain was developed. Serial

sections of a human brainstem were used to derive fiber orientation maps by analysis of polarized light sequences of these sections. Fiber

inclination maps visualize angles of inclination, and fiber direction maps show angles of direction. These angles define vectors which can be

visualized as RGB-colors. The serial sections were aligned to each other using the minimized Euclidian distance as fit criterion. In the 3D

data set of the human brainstem the major fiber tracts were segmented, and three-dimensional models of these fiber tracts were generated. The

presented results demonstrate that two kinds of fiber atlases are feasible: a fiber orientation atlas representing a vector in each voxel, which

shows the nerve fiber orientation, and a volume-based atlas representing the major fiber tracts. These models can be used for the evaluation of

diffusion tensor data as well as for neurosurgical planning.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Diffusion tensor mapping in neuroradiology allows to

derive information about the three-dimensional orientation

of fiber tracts in the living human brain [1]. The method is

based on the preferential diffusion of molecules along the

major fiber tracts, while perpendicular to the fibers diffusion

is limited [2–5]. Thus, diffusion weighted magnetic

resonance imaging measures the anisotropy of diffusion in

the brain, which resembles the orientations of nerve fibers.

Based on diffusion weighted MRI data, diffusion ellipsoids

can be calculated, which represent the orientation of the

major fiber tracts. Inspired by this magnificent new

technique we developed a new neuroanatomic approach to

evaluate the fiber orientation in gross histological sections

of the human brain [6,7].

Our method is able to obtain similar information about

the orientation of fiber tracts in anatomic serial brain

sections as diffusion tensor mapping does but with higher

magnification. This paper gives an overview of the methods

used to explore these anatomical data.

2. Material and methods

The lower human brainstem (pons and medulla oblon-

gata) taken from a 70 year old female who donated her body

for anatomical study, was fixed in 4% aqueous formalin

solution for at least 3 weeks and dissected carefully.

At first the brainstem was embedded in gelatine and

hardened in formalin. Afterwards the specimen was sliced

into four 1 cm thick slabs perpendicular to the axis of

Meinert. After cryoprotecion the gelatine embedded slabs

were sectioned serially at 100 mm using a cryomicrotome

(HM 500 OM, Microm, Waldorf, Germany). A thickness of

100 mm was found to be optimal for estimating the 3D fiber

course [7]. The serial sections were coverslipped without

staining and used to derive fiber orientation maps (FOMs) as

described earlier [6,7]. These serial FOMs were aligned to

each other for three-dimensional reconstruction and for

segmentation of the major fiber tracts of the brainstem.
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2.1. Acquisition

In short, polarized light is used to estimate the three-

dimensional course (angles of direction and inclination) of

nerve fibers in brain sections [7]. The myelin sheaths of the

nerve fibers are birefringent. Light becomes plane polarized

by transmission through a polarizing filter (the polarizer).

The radially oriented lipids of the myelin sheaths of the

nerve fibers are able to twist the light [8], so that it can pass

through a second polarizing filter (the analyzer) with a

polarizing plane perpendicular to the first polarizing filter.

The 258 serial sections of the brainstem sections were

digitized under azimuths from 0 to 808 using two polars only

(in steps of 108). These sequences were used to estimate the

angle of inclination of fibers (in the width of the sample).

The same sections were digitized under azimuths from 0 to

1608 in steps of 208 using a quarter wave plate additionally.

The quarter wave plate is a compensator capable to impose a

phase shift of 1/4 cycle on the light wave, so that all

directions of the fibers from 0 to 1808 can be distinguished

unambiguously from each other according to that azimuth

where the smallest intensity is found. Otherwise, those two

directions of fibers, which are perpendicular to each other

cannot be distinguished [7]. These sequences were used to

estimate the angle of direction of the fibers (in the cutting

plane of the sample).

The sequences were digitized using the 3CCD video

camera Sony DXC-930P, which was connected to a Pentium

personal computer using Windows NT (Microsoft). In this

study, the magnification of the camera was adjusted that one

pixel of the digital image represents a volume of

100 £ 100 £ 100 mm3 in the sample. The settings of the

imaging system (magnification, contrast, brightness) were

constant throughout the study. Image processing was

performed using algorithms written for MATLAB 6.0

(MathWorks Inc., Natick, MA, USA) with the Image

Processing Toolbox.

2.2. Visualization of the data

The angles of inclination and direction can be visualized

as two distinct gray scale images. Fiber inclination maps

visualize angles of inclination from 0 to 908 and fiber

direction maps show angles of direction from 0 to 1808 in

each pixel of the image.

To allow visualization of fiber orientation in one image

those angles were transformed into unit vectors with x-, y-,

and z-coordinates which in turn can be visualized as R-, G-,

B-colors in one color image. Fibers running from left to

right are shown in red, from up to down in green and from

anterior to posterior in blue. This method is inspired by the

visualization of diffusion tensors [2].

2.3. Automatic image alignment

Rigid (isomorphic) transformations were computed on

the serial sections of the brainstem. Each image is translated

and rotated in respect to its predecessor. Different methods

of automatic image alignment are described in the literature:

Fiducial markers [9], principal axis alignment [10],

consistent matrix transformation [11,12], cross correlation

coefficient [10], and the maximal area of overlap [12].

Table 1

Parameters applied for serial image alignment

Consistent matrix transformation Cross correlation coefficient Euclidian distance
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Fig. 1. Reconstructed volumes of the pons. (A) Cross correlation method. This method tends to rotate the sections (arrows) and thus is not suited for this

purpose. (B) Consistent matrix transformation. (C) Euclidian distance.
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Two of these parameters (consistent matrix transform-

ation and cross correlation coefficient) were applied to

the fiber inclination maps of our data set in order to define

the optimal fit of the images (Table 1). In addition, the

Euclidian distance was used as a fit criterion. The optimal fit

is the situation where the fit criterion becomes minimal (or

maximal using the correlation coefficient as fit criterion).

The Euclidian distance method and the consistent matrix

transformation yielded the best results (Fig. 1), while the

cross correlation method caused rotational errors of the

reconstructed volume. Thus, we used the Euclidian distance

method as standard procedure for image alignment. The

rigid transformations were applied to all images (fiber

inclination maps, fiber direction maps, and RGB-images).

2.4. Three-dimensional reconstruction of the brainstem and

segmentation of major fiber tracts

The aligned RGB-sections were imported into the

software 3D Slicer (Massachusetts Institute of Technology,

USA) [13]. Since the 3D Slicer reads raw data files with

256 £ 256 pixels, the sequential images were translated into

this format at first. The software allows slicing the volume

data set and has different tools for segmentation and three-

dimensional reconstruction of anatomical structures in the

volume. Thus, major fiber tracts in the brainstem were

segmented manually and then reconstructed three-dimen-

sionally. This way a 3D fiber tract model of the brainstem

was developed.

3. Results

Two hundred fifty-eight serial axial sections of the

human brainstem were imaged, each yielding fiber incli-

nation maps, fiber direction maps, and RGB images (Fig. 2).

Automatic image alignment was performed using the

minimized Euclidian distance as fit criterion. The three-

dimensional data sets of all sections were imported into the

3D Slicer.

Fig. 2. Fiber orientation maps of a section of the pons. (A) Fiber direction map. Angles of direction (xy-plane of the section, 0–1808) are visualized as grayscale

values. (B) Fiber inclination map. Angles of inclination (z-direction of the sample, 0–1808) are visualized as grayscale values. (C) RGB-coded orientation map.

Fig. 3. Three-dimensional data set of the brainstem (A–C), which was reconstructed from serial axial sections, and the human brain (D–F), which was

reconstructed from serial sagittal sections. The colors visualize different major fiber tracts. (A) Axial slice of the pons. (B) Sagittal slice of pons and medulla

oblongata. The gaps show the borders between the four slabs of the brainstem. (C) Coronal slice of pons and medulla oblongata. (D) Sagittal slice of the human

brain. (E) Horizontal slice of the human brain. (F) Frontal slice of the human brain. Abbreviations are: Pcs, pedunculus cerebellaris superior; Pcm, pedunculus

cerebellaris medius; Pci, pedunculus cerebellaris inferior; Fpc, fibrae pontocerebellares; Lm, lemniscus medialis; Tp, tractus pyramidalis; Fls, fasciculus

longitudinalis superior; Fu, fasciculus uncinatus; Ro, radiatio optica; Fm, forceps major; Cc, corpus callosum.
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Fig. 3(A)–(C) show sections through the brainstem

volume. The red color visualizes fibers running from left to

right, the green color shows fibers running from up to down,

and blue shows fibers running in the axis of the brainstem.

Directions in between these major axes are visualized as

mixed colors in the RGB-color space. This way the major

fiber tracts can be visually distinguished. Thus, the data

set allows of manual segmentation of the major fiber tracts

of the brainstem, e.g. the cerebellar peduncles, the medial

lemniscus, the spinothalamic tract, the pyramidal tract, and

the medial longitudinal fasciculus. In a similar data set of a

human hemisphere the major fiber tracts of the telencepha-

lon (Fig. 3(D)–(F)) can also be seen.

After the segmentation of the fiber tracts of the brainstem

these tracts were reconstructed three-dimensionally (Fig. 4).

This way, the 3D course of these fiber tracts was visualized,

and the spatial relationship of the tracts shown. Most of

these tracts are compact fiber bundles, but e.g. in the case of

the pyramidal tracts the pyramidal bundles are intermingled

with the pontocerebellar fibers at the level of the pons (Fig.

4(A)). The decussatio lemniscorum is shown in Fig. 4(B) in

the middle level of the medulla oblongata, while the

spinothalamic tract fibers cross at spinal segment level.

4. Discussion

Since the described anatomic method has a much higher

resolution than diffusion tensor mapping [7], it allows the

generation of a digital fiber model of the human brain. This

model could be used as a fiber atlas for neurosurgical

planning since major fiber tracts such as the pyramidal tract

have to be carefully avoided in a neurosurgical procedure

[14,15].

In this study the human brainstem was chosen as a model

for developing this method. It was possible to visualize the

major fiber tracts of the brainstem. The intention of our

future work is to develop a fiber atlas of the entire human

brain. A first data set of a human hemisphere is shown in

Fig. 3(C)–(F). Most of the neuroanatomic atlases [16,17]

show mainly the gray matter of the brain since these atlases

are based preferentially on cytoarchitectonic staining

procedures. Thus, a reliable model of the fiber architecture

of the human brain is still lacking. The described

methodology is the basis for realizing such a digital

human fiber model.

While the large fiber tracts of the brainstem are single

compact fiber bundles, the fiber tracts in the telencephalon

are highly intermingled [18]. This poses a problem for the

segmentation of these fiber tracts. Sufficient algorithms are

needed to perform an automatic segmentation. In addition,

the magnification of such a data set should be as high as

possible in order to visualize small bundles of fibers also.

The 3D Slicer uses a resolution of 256 £ 256 pixels, but the

resolution of the original images is much higher (760 £ 574

pixels). Thus, the visual information can be improved by

using maximum resolution of the data sets.

In addition, the presented method could be used for

evaluation of the diffusion tensor maps known from

magnetic resonance imaging. Diffusion weighted MRI

Fig. 4. 3D reconstructed models of the major fiber tracts of the brainstem. (A) Cerebellar peduncles. (B) Medial lemnisci, right spinothalamic tract, and medial

longitudinal fascicles. (C) Medial lemnisci and pyramidal tracts. Abbreviations are: Pcs, pedunculus cerebellaris superior; Pcm, pedunculus cerebellaris

medius; Pci, pedunculus cerebellaris inferior; Lm, lemniscus medialis; Dl, decussatio lemniscorum; Ts, tractus spinothalamicus; Tp: tractus pyramidalis.

Fig. 5. Diffusion tensor imaging. The slices were manually selected from MR-DTI volume (different brain) to correspond with the polarized light sections. The

same color coding scheme is employed, however the direction is set by the principal eigenvector of the diffusivity tensor. (A) Sagittal section of the human

brain. (B) Horizontal section. (C) Coronal section.
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gives information about the three-dimensional orientation of

the major fiber tracts [19–23].

The visualization of diffusion tensors produces images

representing the orientation of the fiber tracts. Interpretation

of these images, however, was performed up to now by

referring to gross anatomical atlases of the major fiber tracts

[20]. Fig. 5 shows an example of diffusion tensor imaging

slices through the human brain [24,25]. These images

contain similar information about the fiber tracts as the

images (Fig. 3(D)–(F)) produced by the method presented

here. However, the colors look different, which may be due

to the different physical principles the two methods are

based upon. The analysis of these differences remains an

interesting focus of our future research.

We demonstrated that the use of digital processing of

polarized light images obtained directly from brain sections

yields FOM, which additionally display smaller bundles of

fibers [7].

In addition, diffusion tensor data can be used to trace

single fiber bundles by following their orientation in the 3D

data set, i.e. to perform a 3D fiber tracking [1,26–29]. A

similar procedure is also conceivable with the presented

FOM, which consist of vectors representing the orientation

of the nerve fibers.

The presented method is able to provide two kinds of

atlases: a fiber orientation atlas representing a vector in each

voxel (Fig. 3), and a volume-based atlas representing the

major fiber tracts in the brain (Fig. 4). These models can be

used for evaluation of diffusion tensor data as well as for

neurosurgical planning.

5. Summary

A new neuroanatomic approach to evaluate the fiber

orientation in gross histological sections of the human brain

was developed. Sequences of polarized light images of

serial sections of a human brainstem were used to derive

FOM using image processing tools. The calculated angles of

nerve fiber orientation are represented in FOMs. Fiber

inclination maps visualize angles of inclination, and fiber

direction maps show angles of direction. These angles

define vectors which also can be visualized as RGB-colors.

The FOMs have a higher magnification than diffusion tensor

mapping has. Thus, the method can be used for developing

fiber models for evaluation of diffusion tensor mapping. The

serial sections were aligned to each other using the

minimized Euclidian distance as fit criterion. In the 3D

data set of the human brainstem the major fiber tracts were

segmented, and three-dimensional models of these fiber

tracts were generated. The presented results demonstrate

that two kinds of fiber atlases are feasible: a fiber orientation

atlas representing a vector in each voxel, which shows the

nerve fiber orientation at each point, and a volume-based

atlas representing the major fiber tracts. These models can

be used for the evaluation of diffusion tensor data as well as

for neurosurgical planning.
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