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Abstract

Purpose An initialization-free approach for perioperative
registration in functional endoscopic sinus surgery (FESS) is
sought. The quality of surgical navigation relies on registra-
tion accuracy of preoperative images to the patient. Although
landmark-based registration is fast, it is prone to human oper-
ator errors. This study evaluates the accuracy of two well-
known methods for segmentation of the occipital bone from
CT-images for use in surgical 3D-navigation.

Method The occipital bone was segmented for registration
without pre-defined correspondences, with the iterative clos-
est point algorithm (ICP). The thresholding plus marching
cubes segmentation (TMCS), and the deformable model seg-
mentation (DMS) were compared quantitatively by overlay-
ing the areas of the segmentations in cross-sectional slices,
and visually by displaying the pointwise distances between
the segmentations in a three-dimensional distance map rel-
ative to an expert manual segmentation, taken as a “ground
truth”.

Results Excellent correspondence between the two methods
was achieved; the results showed, however, that the TMCS
is closer to the “ground truth”. This is due to the sub-voxel
accuracy of the marching cubes algorithm by definition, and
the sensitivity of the DMS method to the choice of para-
meters. The DMS approach, as a gradient-based method,
is insensitive to the thresholding initialization. For noisy
images and soft tissue delineation a gradient-based method,
like the deformable model, performs better. Both methods
correspond within minute differences less than 4%.
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Conclusion These results will allow further minimization
of human interaction in the planning phase for intraoperative
3D-navigation, by allowing to automatically create surface
patches for registration purposes, ultimately allowing to build
an initialization-free, fully automatic registration procedure
for navigated Ear-, Nose-, Throat- (ENT) surgery.
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Introduction

Clinical applications for 3D-navigation in oto-, rhino-, laryn-
gology ideally require sub-millimetric application accuracy,
to avoid iatrogenic lesions of minute and delicate anatomic
structures. In video-endoscopic functional endoscopic sinus
surgery (FESS) these are e.g. the internal carotid arteries, the
orbit, the anterior skull base and the brain. Navigated micro-
scopic surgery has to meet even higher standards for “useful”
application accuracy as the display of navigated structures
in the oculars is extremely sensitive to tracking errors [1].
Landmark-based registration is fast, but requires user inter-
action for thresholding and the definition of anatomic land-
marks for the physical registration process, which makes it
prone to human errors. A segmentation-based registration
allows for surface matching, without pre-defined correspon-
dences (e.g. with the iterative closest point algorithm — ICP
[2]). It relies on the accuracy of the segmentation, which
determines its clinical application accuracy and success.
Medical images need to be segmented for a series of tasks:
surgery planning, registration of the patient to the imagery
(the physical registration process), diagnosis, visualization
and teaching [3,4]. Segmentation needs to be verified against
a figure of merit, established by statistical analysis of all
possible variations in the segmentation. The segmentation
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methods and the criteria for their evaluation differ, depend-
ing on the clinical application. So, volumetric and intensity-
based approaches cannot be used for the patient-to-image
registration process. Bone can easily be segmented with prac-
tically any of the known segmentation techniques [3,4]. Each
clinical application, however, is tailored for specific anat-
omy and surgery, with specific radiologic imaging. Certainly,
there are other advanced segmentation methods available like
the level-sets method [5], which is a 4D-representation of the
evolution of the surface along the series of slices [3,4]. The
method evolves the surface by updating the level set func-
tion, which is an Eulerian formulation of motion which basi-
cally “moves” the segmented surface, so that it is cut by
the slice plane at different levels. For standalone use, the
level-sets method is quite a powerful tool in surface segmen-
tation, but the drawback is the lack of convergence, when
many concavities are present on the segmented surface [3].
Other commonly used segmentation methods — watershed
[3] and adaptive thresholding [4], are available. However,
the deformable model was chosen in order to specifically
use a widely tested gradient-based approach suitable for use
with osseous structures surrounded by “noisy” soft-tissues.
For challenging clinical tasks various approaches exist and
are combined to “segmentation frameworks” [4,6], where
“simple” methods are applied in a sequence to achieve suc-
cessful segmentation of anatomical structures in noisy data-
sets, with discontinuous surfaces and/or blurred boundaries
[7]. We decided to use a rather simple method, deformable
model segmentation [3,4], DMS, rather than exploring more
advanced state-of-the-art approaches.

While grayvalue segmentation is widely implemented in
modern navigation systems, model-based methods are still
not in use for that clinical purpose, to the best of our knowl-
edge. User interaction in the preparatory segmentation step of
3D-navigation is mostly based on a threshold grayvalue seg-
mentation with the marching cubes algorithm [8] (TMCS)
[9,10] to create a triangulated surface of the patient and a
three-dimensional model of the patient, to select anatomical
structures. Triangulations with the marching cubes algorithm
are of sub-millimetric accuracy as the exact locations of the
intersection points of the triangulated mesh are determined
by linear interpolation of the grayvalues of the vertices of
neighboring voxels. The literature describes various meth-
ods for the improvement of the definitions of the surface
faces inside the voxels [11,12] and the optimization of the
polygonization speed [13].

The other method under consideration in this work, the
deformable model segmentation (DMS), uses this surface
as input [3,4,6,8,14—17]. In DMS segmentation a gradi-
ent force-field [3], is calculated from the original grey-scale
image to yield an optimized segmentation. The combination
of these two methods is, apart of an irrelevant choice of a
TMCS threshold (see later), the idea of initialization-free
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Fig. 1 The “ground truth” — an expert segmentation of the occipi-
tal bone in 3D-Slicer. The orientation is indicated as anterior (A) —
posterior (P) and left (L) — right (R)

surface generation for registration for clinical 3D-navigation.
As there is no “true” segmentation, some base for comparison
is taken as “ground truth” to which the segmentations meth-
ods are compared through quantitative measurements [9, 18].
The sharp contours of the bony skull in CT-images are a good
basis for a quantitative evaluation of the segmentation meth-
ods under consideration here; we chose a manual expert seg-
mentation as ground truth. This quantitative evaluation had
to answer whether the DMS approach would yield results
similar to the widely used TMCS implemented in clinical
navigation systems.

Materials and Methods

A CT-dataset of the head with spatial resolution 0.39 x
0.39 x 2.5mm and a sampling resolution of 512 x 512,
acquired with a Siemens Somatom Plus 4 Volume Zoom
scanner (Siemens, Erlangen, Germany) at the University
Clinic of Radiology at the Medical University of Innsbruck
was taken for the study. The “ground truth” (Fig. 1) was
generated by averaging five manual segmentations in the
3D-Slicer [19] with MatLab [20]. Only voxels, that were con-
tained in all five segmentations were included in the “ground
truth”. The posterior quarter of the CT-images, which con-
tains all the anatomic features of interest, was taken for the
segmentation of the occipital bone. Primarily to save com-
puting time and to exploit the closed surface profile of this
anatomic location. Moreover, for complete CT-slices leaking
of region-growing through the natural openings of the bony
skull inside would add structures to the segmentation and
make the triangulation of a mesh for DMS impossible.

The TMCS-method is implemented in the VTK classes
ImageThreshold and MarchingCubes, where the marching
cubes algorithm is provided with a threshold value setting
[21]. A region-growing algorithm [22] was applied after the
threshold segmentation. It delineated the occipital surface as
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a thin membrane, reducing the data in the segmentation to
the structures of interest. Since in our clinical setting axial
CT-slices are used that have the anterior direction in the upper
part of the images we decided that the region-growing started
from a seed in the posterior left corner of each slice in the
image and grew, until it filled out the area, surrounded by
the slice border (only of the posterior quarter) and the con-
tour of the occipital bone. The resulting binary images were
triangulated to yield the starting mesh for the DMS [22].

Basically there are two major types of formulations of
DMS, the energy-minimization and the dynamic force for-
mulation [22]. The deformable model implemented in the
ITK class DeformableMesh3DFilter utilizes the latter one.
While the energy-minimization deformable models mini-
mize an energy function, whose solution satisfies a minimum
principle to fit on the features of interest, the dynamic force
formulated ones have the flexibility to apply different types
of external forces onto the deformable surface. Both formula-
tions of a minimization principle resemble the physical world
that can be described by Lagrangian mechanics and the cal-
culus of variations [23], providing the time-evolution of the
deformable surface. In general, the dynamic force formula-
tion has the form:

GED ¢
MW = Faamp(X) + Fint(X) + Fext(X) (D
which follows from Newton’s second law. Here X (¢) is the
parametric representation of the deformable surface, pu is a
mass coefficient and Fyamp(X) is a damping (viscous) force,
defined as —y 0X/dt (y is a damping coefficient). Since the
deformable surface is accepted to have no mass characteris-
tics, p is set to zero. Then (1) becomes

X
VE = Fint(X) + Fexe(X) 2
Equation (2) is the basis of the DMS method. (for detail,
please see [6]). In summary, its dynamic formulation has the
form:

d+Kd= fe &)

Here d(z) is the local deformation, d = dd /0t, K is a stiff-
ness matrix and fex; is the gradient-derived external force.
According to the theory of elasticity, the product Kd pro-
vides the forces of resistance of an elastic membrane, here
associated with the internal forces that keep the mesh from
disruption during deformation. The solution of (3) provides
the time-dependent displacements for all nodes in the mesh,
which is then updated with

dnew == dAt + dold (4)

where dpew and dg are the new and the old position of a node

respectively, d = dd/dt, and At is the integration parameter.

The stiffness matrix has considerable influence on the
deformation of the mesh. The choice of the parameters for
its calculation is vital for tuning the deformable model. It
is derived from the deformation strain energy, which in the
theory of elasticity results from the integration of the stress
and tensor vectors [4]. The stiffness matrix is

K =/(aS)TDanu (5)

Here S is the basis matrix, whose elements are basis func-
tions, defining the geometry of the triangular elements in the
mesh, 9 is the differential operator, D is a symmetric matrix,
derived from the local deformations, and u is the Cartesian
coordinate. The basis matrix is 3 x 3, and its basis func-
tions are the shape functions of a triangle. After the march-
ing cubes triangulation, the deformable surface is discretized
into triangular elements, and the shape functions are used to
interpolate the displacement within an element. The differ-
ential operator d isa 3 x 3 diagonal matrix with the elements
d/du, d/dv and 1 along the main diagonal, where u and v are
the Cartesian coordinates. The symmetric matrix D gives the
relationship between the stress and the strain vectors (theory
of elasticity). It is 3 x 3 with elements wg, wg; and wog
along the main diagonal, which are derived from the local
deformations. The element wq controls the local magnitude
of the deformation and w1, wg; control the local variation of
the deformation in the u, v directions, respectively. For sim-
plicity, it is assumed that w19 = wp; = w1 and wyy = wp.
The proper selection of wy and w is decisive for the success-
ful segmentation with the deformable model. Lower values
of wo and higher values of w; make the mesh more resistant,
which maintains its intactness, on the contrary higher wg and
lower w; achieve better fit onto shapes of complex curvature.

The external force in (3) is derived from the image. It
is formed by the second-order derivative gradient vector,
according to

— 2
VIGs (., 2% 10,y 2)1|) )

fG(x’ y’ Z) = _%)(we

Here I (x, y, z) is the original image, w, is a positive weight-
ing parameter, G, (x, y, z) is a 3D Gaussian function with
standard deviation o, s is the gradient operator, and  is the
convolution operator. The image is blurred with a Gaussian
filter to remove noisy regions and to expand the effective
range of the gradient force. The absolute value of the force-
vector at a node is calculated as the projection of the gradi-
ent-vector on the normal-vector at the node. The direction of
the force vector is determined by the sign of this dot product
by assigning positive signs to locations inside the surface and
vice versa.

The stiffness matrix K is calculated for each node in the
mesh. Then Egs. (3) for all the nodes are solved with the
finite elements method, and the mesh is evolved with (4).
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Fig. 2 Flowchart of the method, showing its integration in a potential
clinical application

Fig. 3 Meanings of the three fractions, applied for the quantitative
evaluation of the segmentations. This sketch graphically shows that the
TPVF is that fraction of the “ground truth” segmentation that is correctly
segmented by a certain method. Similar arguments hold for FPVF and
FNVF; for abbreviations see text

The flowchart of the method (Fig. 2) shows the preparation
and the sequence of the segmentation process.

The two segmentation methods were implemented with
ITK, VTK and the fast light toolkit (FLTK) [24]. The dataset
was segmented on a Pentium 4, 2.66 GHz PC with 256 RAM
and GeForce FX 5200 graphics card, under Windows XP. The
implementation in C++ is platform-independent and can be
compiled for Linux, Mac OSX and Solaris. When the dataset
is loaded, the operational parameters are set by the user and
the steps of the automatic segmentation can be followed.

The accuracy of the two segmentations was evaluated in
two ways. First, they were saved in slices as binary images
and compared to the “ground truth”. For each slice, three
fractions were formed [18] (Fig. 3):

1. False Negative Volume Fraction (FNVF) — the area,
contained in the “ground truth”, while missed by the seg-
mentation, divided by the area of the “ground truth”.
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Fig. 4 Mean values of FNVF, FPVF and TPVF for TMCS with a
threshold value in the interval [200, 1,200] HU, at steps of 200 HU

2. False Positive Volume Fraction (FPVF) — the errone-
ously segmented area, which is not contained in the
“ground truth”, divided by the area of the “ground truth”.

3. True Positive Volume Fraction (TPVF) — the truly seg-
mented area, divided by the area of the “ground truth”.

A better segmentation is indicated by lower values of FNVF
and FPVF, and higher values of TPVF, respectively. The
image-arithmetic was conducted in MatLab [18]. A net vol-
ume fraction (net VF) was formed by subtracting the two false
fractions (FNVF and FPVF) from the true fraction (TPVF)
and taken for the quantitative estimation of the accuracy of
the two segmentation methods.

The evaluation method was first used to determine the
threshold value for TMCS (Fig. 4). The criteria compare the
two segmentations at voxel-level [18]. Since model-based
segmentations can extract shapes at sub-voxel level (the node-
density in the mesh is higher than the density of the voxel
grid) the CT-dataset was over-sampled by tripling the spatial
resolution in z-direction. To apply the first accuracy evalua-
tion method, the three-dimensional surfaces (meshes) of the
two segmentations were intersected with the oversampled
(tripled) CT-slices and each of them was compared slice-by-
slice to the “ground truth”, to achieve an accuracy estimation
at sub-voxel level.

Second, the two segmentations were compared to each
other in a pointwise manner and the distances between the
pairs of corresponding points were presented in a distance-
map graphic. The pointwise distance was calculated as the
absolute Euclidean distance between the corresponding
points in the two segmentations. Mathematically, the point-
wise distance Dy is:

Dy = /(61 = 1202 + (31 = y2)? + (21 — 22)? ™)
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where x1, y1, 21, X2, ¥2 and z» are the Cartesian coordinates
of a node in the first and the second mesh, respectively.

Incorporating data accuracy in the visualization is a
well-known approach, providing intuitive information about
data quality, e.g. the uncertainty of the triangulation can be
assigned to the hue values and displayed by rendering [25].
The pointwise distance has also been used to represent the
variation of the segmented surface [6].

Results

The threshold value was set to 400 Hounsfield units (HU),
to leave only bone in the image. The value was chosen after
a comparison of TMCS to the ground truth for a series of
threshold values (200, 400, 600, 800, 1,000, 1,200). As is
well known, bone is displayed from 40 to 3000 HU in CT
images. The graphical display of the results (Fig. 4) shows
that all three criteria, i. e. FNVFE, FPVF, and TPVF, respec-
tively, vary slowly with the HU value over a broad range of
HUs. While the FNVF and the TPVF show a better segmen-
tation at 400 HU, these quality criteria deteriorate towards
1,200 HU; the FPVF value indicates a better segmentation at
1,200 HU than at 200HU. The net VF was considered as a
criterion for the choice of the threshold value. As can be seen
from Fig. 4, the net VF is 81.7% at 400 HU, against 81.5 and
80.8% at 600 and 200 HU, respectively. For threshold values
below 200 HU, the threshold-based segmentation failed.

While the TMCS is dependent on the initialization thresh-
old value, even if this dependence varies slowly, the DMS
is independent from the starting mesh and the thresholding
HU value by construction, as long as the initial mesh is and
its topology are “close” to the object to be segmented [6].
Figure 5 shows the three comparison criteria [18] and the
net VF for the DMS segmentation. These parameters remain
practically constant, with small variation for threshold values
above 1,000HU. This is due to the initial mesh as provided
by the TMCS segmentation, see above.

The segmentation of the occipital bone in 3D-Slicer
(the “ground truth”) took up to one minute per slice, depend-
ing on the expertise of the observer. For the dataset used (25
slices), each manual segmentation took 15-25min.
The “ground truth” was generated from five manual seg-
mentations, and the time needed could be estimated as
1.6 man-hours.

On the computer described, the TMCS method took 35,
computing the gradient force field 405, and the deformation
7.4 s/iteration.

The deformation parameters were set to: At = 0.01s,
wp = 0.14, 1 = 0.05. The most important parameter in
Eq. (4)is At. Higher values of Atincrease the displacements
at each iteration, this way the deformation requires less iter-
ations to converge. The parameters wg and w; control the
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ization

local magnitude and the local variation of the deformation,
respectively [4,6]. Increasing wo makes the mesh softer and
more susceptible to fitting complex curvature on the shape.
To maintain control on the deformation, higher values of wg
have to be applied together with lower values of w;. The set-
tings of wgp and w1, 0.14 and 0.05, respectively, are for high
degree of curvature in the shape [6]. They were chosen, in
order to optimally imprint the feature of the lambda-fissure,
ultimately needed for a successful patient-to-image registra-
tion with the ICP algorithm [4,6]. However, DMS is quite
sensitive to the choice of parameters, but close correspon-
dence between TMCS and DMS can be achieved with the
proper parameter set best suited for the predominant curva-
ture in the object.

The results from the comparison of TMCS and DMS
to the ground truth with FNVEF, FPVF and TPVF are pre-
sented in Figs. 6, 7, 8, and 9. Both methods agree closely,
within a regime of less than 5%. The TMCS, Fig. 6, over
the whole range investigated is closer to the “ground truth”,
with maximum differences < 3%. The DMS, on the other
hand, gives lightly worse results, with maximum differences
to the ground truth < 4%. All three criteria (FNVF, FPVF and
TPVF) show a small, but systematically better adherence of
the grayvalue segmentation to the “ground truth”, see Figs. 6,
8 and 9. However, the differences are minute. The deformable
model segmentation (yellow lines in all figures) shows pre-
dominantly higher FNVF and FPVF and lower TPVF values
along the whole range of slices.

With deformation settings of wg and wp, 0.07 and 0.1,
respectively, the mesh is too stiff to fit the curvature of the
shape, which leads to “springs” in the FNVF in areas with
“bigger” steps between the adjacent slices (Figure 7). It can
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Fig. 6 False Negative Volume Fraction (FNVF) of the two segmenta-
tions. The TMCS systematically adheres better to the “ground truth”
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Fig. 7 False Negative Volume Fraction (FNVF) of the two segmen-
tations with improperly set parameters of the deformation: wy =
0.07; w; = 0.1. The increased stiffness of the mesh has caused
“springs” in the DMS segmentation in the areas with bigger “steps”
between the slices

be observed from the graphs, that for slice ranges with bigger
“steps” in the shape between adjacent slices (see the encir-
cled areas in Fig. 10), the TMCS method performs better, due
to the implemented linear interpolation, the marching cubes
algorithm does along the voxel edges. The two methods have
practically identical adherence to the “ground truth” in slice
ranges, with smaller “steps” of the contour between adjacent
slices, see Figs. 6, 7, 8 and 9.

Figure 10 demonstrates the correspondence of the TMCS
with “ground truth” segmentation. Both segmentations on the
oversampled data set are triangulated to show the differences.
For certain areas, as marked by the circles in the figure, a clear
deviation is visible, as the inset of the area of the Lambda
fissure shows. The graphical visualization of the DMS results
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Fig. 8 False Positive Volume Fraction (FPVF) of the TMCS and DMS
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Fig. 9 True Positive Volume Fraction (TPVF) of the TMCS and DMS
segmentations

as compared to the ground truth is seen in Fig. 11, for which
a very similar behavior like with the TMCS can be noted, see
the encircled areas and again the inset of the Lambda fissure.

As another evaluation criterion the pointwise distance
measurement was used, where the two segmentations (TMCS
and DMS) were compared to each other. Figure 12 shows
the point-wise difference between the two segmentations
as a color-coded distance map. The colors vary from light
yellow to yellow, orange, red and dark red, corresponding to
distances of below 0.2mm, 0.2-0.4mm, 0.4-0.6mm,
0.6-0.8 mm and above 0.8 mm, respectively. This represen-
tation visualizes the progress of the deformation by coloring
the areas, where the two segmentations differ. In areas with
higher curvature, the differences grow, while the TMCS
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Fig. 10 A zoom in the mesh, displayed in 3D-Slicer. The oversampling
is seen as three layers at each “step”. The difference between the TMCS
mesh and the “ground truth” is seen in the colored spots (“‘ground truth”
green, TMCS pink). The three circles mark zones with visibly discern-
ible differences in the segmentation; the inset is a magnification of one
of these zones

Fig. 11 A zoom in the mesh, displayed in 3D-Slicer. The oversam-
pling is seen as three layers at each “step”. The difference between the
DMS mesh and the “ground truth” is seen in the colored spots (“‘ground
truth” green, DMS yellow). Annotations as for Fig. 10

remains closer to the “ground truth”. Note, however, that both
methods (TMCS and DMS) correspond within arange < 5%.

Figure 12 shows the deformation evolution of the mesh
with these preset parameters at 120, 250 and 3,221 (conver-
gence) iterations. The average pointwise distance was calcu-
lated by summing all values and dividing them by the number
of points. The average, the maximal pointwise distance and
the standard deviation are shown in Table 1.

The deformation iterates, either until it reaches the preset
number of iterations, or converges. The number of iterations
necessary is strongly dependent on the integration parameter
At. Figure 13 shows how the number of iterations needed to
reach convergence depend on the choice of At,0.1 and 0.01 s,
respectively. With higher values of Ar the deformation at
each iteration is stronger and the algorithm converges much
faster. Values of Az above 0.1s, however, lead to roughness
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Fig. 12 A color-coded display of the pointwise distances of the
deforming DMS mesh with respect to the initial TMCS mesh. Defor-
mation parameters are: At = 0.01s; wp = 0.14; w1 = 0.05. The
deformation progress is shown at 120, 250 and 3221 (convergence)
iterations. The colors mean: light yellow distance below 0.2 mm, yellow
0.2-0.4mm, orange 0.4-0.6 mm, red 0.6-0.8 mm and dark red above
0.8mm

in the mesh, due to the intensity of local deformations. Lower
values on the other hand lead to an impractically high num-
ber of iterations. This way the optimal range of At was estab-
lished from 0.01to 0.1s (At = 0.1s requires 317 iterations
to converge, At = 0.01s: 3,221 iterations, respectively).
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Table 1 Deformation progress with fixed parameters (color-coded
distance-map, Fig. 12)

No. Mean
of steps pointwise
distance (mm)

Standard deviation
of the pointwise
distance (mm)

Maximal
pointwise
distance (mm)

120 0.0855 0.3 0.0725
250 0.332 0.625 0.1345
3221 0.3080 1.25 0.24

Deformation parameters are: At = 0.01s; wg = 0.14; w1 = 0.05

o — della X
I --- delta ¥
- deftaZ |
ol T derat=01s
2 M .
: deltat=0.01s

log(distance) [mm]

Fig. 13 Convergence behavior of the deformation process with At =
0.1s and At = 0.01s. Other deformation parameters are: wy = 0.14;
w1 = 0.05. The Y-axis shows the natural logarithm of the change in
the coordinates (Ax, Ay, Az), calculated by the iteration, numbered on
the X-axis

Discussion

Modern surgical 3D-navigation takes advantage of a vari-
ety of methods for registration and frameless stereotaxy. The
inaccuracy of the registration accumulates along the sequence
of operations, starting with the preoperative imaging. While
the imaging modalities have reached a remarkable quality
(spatial resolutions of below 0.4 mm), preoperative planning
can still be improved with alternate segmentation methods
and improving their clinical application.

The TMCS method applied the MarchingCubes class in
VTK [21], which combines a grayvalue segmentation (thres-
holding) with a triangulation with the marching cubes algo-
rithm. State-of-the-art navigation systems use this sequence
for 3D-reconstruction, during the selection of landmarks for
registration, to the best of our knowledge. However, they still
do not make use of model-based segmentation methods, like
DMS, which could improve the surface-based registration. In
literature, deformable models are applied for fine-tuning of
a TMCS of noisy data [3,6] (like in PET brain images [16]
and in the segmentation of breast cancer [26]). Whether a
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further deformation of the segmented surface provides a bet-
ter correspondence to reality much depends on the speci-
ficities of the clinical application - the signal-to-noise ratio
(SNR) of the data, the accuracy requirements and the com-
plexity of the segmented anatomy. While it could be expected,
that on data with good SNR (like bone in CT-images) the
TMCS performs better than DMS, the research of accuracy
elements of both methods was oriented towards their mutual
performance in a clinical application for surface-based reg-
istration for 3D-navigation.

Using the occipital bone for surface registration assures
feature invariability. Since, mathematically, the registration
under consideration is a rigid body transformation, the
rigidity of the anatomy in the planning phase anatomy is
a necessary predicament for a successful intraoperative reg-
istration. Skin shift is relevant if the facial relief or non-
invasive markers are utilized for matching the patient to the
preoperative radiologic data esp. in elderly patients and when
muscle relaxing agents are applied intraoperatively [27].
However, use of select facial bone features (Nasion, Spina
nasalis anterior, Sutura frontozygomatica) for patient-
to-image registration purposes is potentially impaired due
to the sterile draping of the patient. Additionally, “hidden”
bony structures are not accessible directly [28]. ENT-surgery
has become a minimally-invasive treatment, and using inva-
sive markers and stereotactic frame fixation is generally not
deemed acceptable. The occipital bone, as an alternative,
provides the specific feature of the lambda-fissure for reg-
istration without predefined point correspondences with the
ICP algorithm [28]. It can be accessed intraoperatively from
below the operating table, without interference with the
remaining setup in the operating room (OR) by e.g. ultra-
sound A-mode for intraoperative surface acquisition [29].
The described segmentation methods can be applied on the
clinical routine CT-datasets for 3D-navigation in ENT-
surgery. The principal goal of this study was to investigate the
possibilities to use model-based segmentation methods for
initialization-free segmentation and registration approaches
in navigated ENT surgery. Such approaches are not imple-
mented in the clinical navigation systems; instead, they
widely use the TMCS method. While the TMCS is
sufficient for a 3D-reconstruction of high-contrast objects in
CT-imaging in the planning phase of a point-based registra-
tion (done with the 4-points algorithm [10]), the challenge
for segmentation for navigational purposes lies in soft-tissue
structures and MR imaging with the ICP algorithm. Although
the TMCS method provided slightly better results for bone
segmentation from CT-images, the gradient-based segmen-
tation approach and its use in complementing the TMCS
method can be potentially useful for automating the plan-
ning and registration steps of navigated interventions. Thus
the initialization of intraoperative 3D-navigation will not rely
on human interaction, which would make it less error-prone.
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There are studies in literature [3,6], which apply deform-
able models to segment a closed surface of an entire organ or a
complete region in the medical image, either starting from an
initial estimation of the surface, or from a seed which is grown
to fill out the segmented region. The described method seg-
ments a patch, containing the anatomy of interest. It reduces
the data, while leaving the feature for registration, which is
beneficial to the surface-matching algorithm. In the literature,
the reduction of data, before triangulating the surface, is used
as a rendering optimization [30], where only the visible part
of the surface is triangulated for faster visualization. In the
presented method, only the feature for registration is triangu-
lated. While it is a common approach to use region-growing
algorithms as an initialization for a deformable model [30],
here the region-growing was applied as an intermediate step
between TMCS and DMS, to localize the patch at the occip-
ital bone, without user interaction.

The accuracy elements of TMCS and DMS were
researched with validated quantification approaches [30], for
the optimization of the segmentation step, and towards the
clinical application of these methods for 3D-navigation in
ENT-surgery.
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