A 3D MODEL SIMULATING SEDIMENT TRANSPORT, EROSION AND DEPOSITION WITHIN A NETWORK OF CHANNEL BELTS AND AN ASSOCIATED FLOODPLAIN

Derek Karssenberg¹ & John Bridge²

¹Utrecht University, the Netherlands ²Binghamton University, U.S.A.

Content

- short introduction to the model
- model outputs standard run
- model components and sensitivity analysis
- conclusions

Channel network

- multiple channels
 erosion and deposition from sediment continuity equation
 bifurcations (incl. avulsions)

Channel belts

■ width increases through time

Standard run • parameters and boundary conditions comparable to Rhine-Meuse • cell size 200 m, modelling area 30 x 60 km • external forcing: base level change

Probability P(a) of a new bifurcation (in a year, for each cell)

$$P(a) = P_s P_d$$

- P_s probability of a bifurcation as function of the superelevation
 -> function of ratio of downstream slope and slope
 perpendicular to the channel belt
- P_d probability of a yearly flood discharge leading to an avulsion, given a very high superelevation of the channel belt

Water flow routing

 at a bifurcation, water discharge is distributed over the two distributaries according to

$$\frac{q_1}{q_2} = \frac{\sqrt{s_1}}{\sqrt{s_2}}$$

 s_1, q_1 s_2, q_2

with,

 q_1, q_2 water discharge (m³/year) for the two distributaries s_1, s_2 channel gradient of the two distributaries (directly downstream of the bifurcation)

Channel network evolution

■ a channel disappears when

$$\frac{q_{low}}{q_{high}} \leq u_{crit}$$

with, at the bifurcation,

 q_{low} water discharge (m³/year) of the channel with the lowest discharge

 $q_{\it high}$ water discharge (m³/year) of the channel with the highest discharge

Diffusion

$$q_s = aq_w \frac{\partial h}{\partial x_c}$$

sediment transport (m³/yr) discharge (m³/yr) q_s

 q_w

parameter

elevation of the bank of the channel (m) h

distance along the channel \boldsymbol{x}_{c}

Changing the diffusion parameter and sediment input 10 ky 5 ky standard run 5 kỷ 10 ky diffusion x 5, sediment input /5

